scholarly journals Engineering of Calcium Alginate- PANI@Sawdust Wood hydrogel Bio-beads for the Removal of the Sulfonate Groups-Containing Orange G dye from Aqueous Solution

Author(s):  
ABDELAZIZ IMGHARN ◽  
Nouh Aarab ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
Mohammed Elhoudi ◽  
...  

Abstract The aim of this work is to investigate the adsorption performance of orange G (OG) dye from aqueous solutions employing PANI@sawdust biocomposite enrobed by calcium-alginate biobeads (Alg-PANI@SD). The as-prepared adsorbent was characterized by scanning-electron-microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and Fourier transforms infrared (FT-IR) spectroscopy, and used to remove Orange G dye from water. batch tests were performed as a function of adsorbent dosage, pH, contact time, interfering ions and initial OG dye concentration. Experimental results show that the kinetic model of pseudo-first-order (PFO) and Freundlich isotherm provided a good fitting of the whole experimental data. The results revealed that the as-prepared tricomposite Alg-PANI@SD, has the potential to be applied as a low-cost adsorbent for the adsorption of OG dye from aqueous media.

Author(s):  
Lahoucine Brini ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
Asmae Bouziani ◽  
Zeeshan Ajmal ◽  
...  

Abstract Novel an arginine-modified Heliotrope leaf (Arg@HL) was used as adsorbent for the crystal violet (CV) dye adsorption in a batch process. The physicochemical and morphological composition of Arg@HL were characterized by field-emission-scanning-electron-microscopy (FE-SEM), Fourier transforms infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC). The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent amount, initial dye concentration, temperature and pH of dye solution. The optimum conditions of adsorption were found on the batch scale as followed: CV concentration of 20 mg·L−1, an amount of 0.75 g·L−1 of the adsorbent, 90 min contact time, 6 pH and 25 °C temperature for Arg@HL. The results confirmed a second-order model explaining the dye crystal violet's adsorption's kinetics by Arg-Heliotrope leaves. The Langmuir model effectively defines the adsorption isotherms. The results revealed that the Arg@HL has the potential to be used as a low-cost adsorbent for the removal of CV dye from aqueous solutions.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2020 ◽  
Vol 10 (8) ◽  
pp. 2726 ◽  
Author(s):  
Roxana Nicola ◽  
Otilia Costişor ◽  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Radu Lazău ◽  
...  

Magnetic iron oxide-silica shell nanocomposites with different iron oxide/silica ratio were synthesized and structurally characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), small-angle neutron scattering, magnetic and N2-sorption studies. The composite that resulted with the best properties in terms of contact surface area and saturation of magnetization was selected for Pb2+ adsorption studies from aqueous media. The material presented good absorption capacity (maximum adsorption capacity 14.9 mg·g−1) comparable with similar materials presented in literature. Its chemico-physical stability and adsorption capacity recommend the nanocomposite as a cheap adsorbent material for lead.


2015 ◽  
Vol 9 (1) ◽  
pp. 67-75
Author(s):  
Mara Grube ◽  
Olga Chusova ◽  
Marita Gavare ◽  
Karlis Shvirksts ◽  
Emma Nehrenheim ◽  
...  

This study demonstrates the application of FT-IR spectroscopy for investigating the remediation of pink water with the low cost adsorbent pine bark. The removal of 2,4,6-trinitrotoluene (TNT) from pink water by adsorption to pine bark was accompanied by a reduction in intensities of peaks at 1544 and 1347 cm in the spectra of acetonitrile extracts of the pine bark. Hierarchial cluster analysis differentiated samples with high (30-180 mg/L) and low (0-4 mg/L) TNT concentrations, demonstrating the potential of this approach as a quick screening method for the control of the removal of TNT from pink water. The amount of lignin in pine bark was inversely proportional to the size of the pine bark particles, while the concentration of phenolic hydroxyl groups increases with increasing size of pine bark particles. FT-IR spectra showed that as well as TNT, pine bark can also adsorb nitramine explosives such as RDX and HMX.


2020 ◽  
Vol 10 (6) ◽  
pp. 1925 ◽  
Author(s):  
Loris Pietrelli ◽  
Iolanda Francolini ◽  
Antonella Piozzi ◽  
Maria Sighicelli ◽  
Ilaria Silvestro ◽  
...  

Chitosan is very effective in removing metal ions through their adsorption. A preliminary investigation of the adsorption of chromium(III) by chitosan was carried out by means of batch tests as a function of contact time, pH, ion competition, and initial chromium(III) concentration. The rate of adsorption was rather rapid (t1/2 < 18 min) and influenced by the presence of other metal ions. The obtained data were tested using the Langmuir and Freundlich isotherm models and, based on R2 values, the former appeared better applicable than the latter. Chitosan was found to have an excellent loading capacity for chromium(III), namely 138.0 mg Cr per g of chitosan at pH = 3.8, but metal ions adsorption was strongly influenced by the pH. About 76% of the recovered chromium was then removed simply by washing the used chitosan with 0.1 M EDTA (Ethylenediaminetetraacetic acid) solution. This study demonstrates that chitosan has the potential to become an effective and low-cost agent for wastewater treatment (e.g., tannery waste) and in situ environmental remediation.


2011 ◽  
Vol 228-229 ◽  
pp. 83-87
Author(s):  
Zeng Ping Zhang ◽  
Shuan Fa Chen ◽  
Jian Zhong Pei

A kind of nonfunctional silsesquioxane (SSQ), methylsilsesquioxane (Me-SSQ), was used to modify cyanate ester resin (CE) in this paper. First, methylsilsesquioxane (Me-SSQ) was synthesized by the hydrolysis and condensation of methyltriethoxysilane. Then a series of Me-SSQ/CE hybrids containing 0wt%, 1wt%, 5wt%, 10wt% and 20wt% of Me-SSQ were prepared. The effect of Me-SSQ content on the curing behavior and thermal properties of materials was investigated by using Fourier transforms infrared (FT-IR) spectroscopy and thermogravimetry (TG), respectively. FT-IR results indicate that the addition of Me-SSQ does not show significant effect on the conversion of CE. However, TG data show that Me-SSQ improved the thermal properties of CE greatly.


2021 ◽  
Vol 13 (4) ◽  
pp. 2191
Author(s):  
Tunzeel Iqbal ◽  
Shahid Iqbal ◽  
Fozia Batool ◽  
Dimitrios Thomas ◽  
Malik Muhammad Hassnain Iqbal

In order to conserve the energy used for remediation of harmful metals from aqueous media, an adsorption process was performed. It is efficient and low-cost method with zero carbon emissions as compared to other methods. A hematite-based novel nanomaterial loaded onto biochar was utilized for the remediation of toxic cadmium metal ions from aqueous media. Saccharum munja has been employed as low-cost feedstock to prepare the biochar. Three adsorbents i.e., raw Saccharum munja (SM), Saccharum munja biochar (SMBC) and hematite-loaded Saccharum munja bichar (HLSMBC) were used in batch adsorption tests to study uptake of metal ions by optimizing the experimental parameters. Experimental data and calculated results revealed maximum sorption efficiency of Cd(II) removal was given by HLSMBC (72 ppm) and SMBC (67.73 ppm) as compared with SM (48.7 ppm). Among adsorption isotherms applied on work best fit for Cd(II) adsorption on SM was found for a Freundlich isotherm with high values of correlation coefficient R2 ≥ 0.9 for all sorbents and constant 1/n values between 0–1. Equilibrium results were evaluated using five different types of errors functions. Thermodynamic studies suggested feasible, spontaneous and endothermic nature of adsorption process, while, the ∆H parameter < 80 kJ/mol indicated physiosorption and positive ∆S values promoted randomness of ions with increase in adsorption process. Data fitted into type I of pseudo second order kinetics having R2 ≥ 0.98 and rate constants K2 (0–1). Desorption process was also performed for storage, conservation and reuse of sorbent and sorbate materials.


2017 ◽  
Vol 22 (1) ◽  
pp. 7 ◽  
Author(s):  
Ervia Yudiati ◽  
Alim Isnansetyo

This research was aimed to identify the brown seaweed, to characterize the acid, sodium and calcium alginate, and to examine the alginate yield. The identification was done phaenotypically. The extraction method was pretreated by ethanol depigmentation, followed by the extraction of Na2CO3/EDTA and CaCl2  and presipitated with absolute ethanol. The characterization of alginate was done by FT-IR spectroscopy and Thin Layer Chromatography by comparing the samples with standard alginate (Sigma, USA). The key of identification  showed that the species was Sargassum siliquosum. There are similarities in signal vibration and TLC spots among the samples and the standard. The TLC test was also showed that those alginates contain mannuronic and guluronic acid. The highest yield was produced by Sodium alginate (40,34% + 0,21), followed by Acid alginate (11,51% + 0,15) and Calcium alginate (4,8% + 0,09). Keywords: alginate, characterization, Sargassum siliquosum, yield


2021 ◽  
Author(s):  
Mohan Arthanari ◽  
Dhanapalan Senthil Kumar ◽  
Ravikumar Jayachandran ◽  
Ananthanarayanan Yuvaraj ◽  
Ramasundaram Thangaraj

Abstract An enormous amount of chicken feather waste materials released by the poultry industry creates severe environmental pollution. Vermicomposting is an eco-friendly way to degrade chicken feather waste along with microbial mixture (Panchagavya). Chicken feather waste was pre-decomposed by mixing it with fresh cow dung (T1), dry cow dung (T2), and Panchagavya (T3). Among these, T3 exhibits rapid deterioration of chicken feather waste and seven combination T3 substrates (E0-E6), taken for the vermicomposting process by Eudrilus eugeniae in 60 days. Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM-EDS) and Fourier Transforms Infrared (FT-IR) Spectroscopy are used to assess compost maturity. The result shows that E1 (0.050:1 ratio) shows various functional groups, rich nutrients, and necessary acids than other combinations. For large-scale commercial vermi-stabilization of chicken feather waste, the E1 combination is suitable for manure production and thereby enhances soil fertility, agricultural production.


Sign in / Sign up

Export Citation Format

Share Document