scholarly journals Phyto-Extract-Mediated Synthesis of Silver Nanoparticles Using Aqueous Extract of Sanvitalia procumbens, and Characterization, Optimization and Photocatalytic Degradation of Azo Dyes Orange G and Direct Blue-15

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6144
Author(s):  
Madeeha Aslam ◽  
Fozia Fozia ◽  
Anadil Gul ◽  
Ijaz Ahmad ◽  
Riaz Ullah ◽  
...  

Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact time were studied. Further, AgNPs were characterized by UV–visible spectroscopy, FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant extract contained essential functional groups like O–H stretching of carboxylic acid, N–H stretching of secondary amides, and C–N stretching of aromatic amines, and C–O indicates the vibration of alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy. Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant silver leaching, thereby signifying notable photocatalytic properties of AgNPs.

Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Background The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. Results SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO− act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20μg/mL. Conclusions This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.


2012 ◽  
Vol 585 ◽  
pp. 144-148
Author(s):  
Poushpi Dwivedi ◽  
S.S. Narvi ◽  
R.P. Tewari

In this nanoregime attempts to bring forth nanoparticles and nanomaterials are myriads, with there interesting and demanding applications in almost every field. Today the field of nanoscience has bloomed with the confluence of nanotechnology with material science, biology, biotechnology and medicine and the need for nanotechnology will only increase as miniaturization becomes extremely important in various arrays of life. Since time immemorial silver nanoparticles have been extensively used for hygienic and healing purposes, and even until most recently, it has indispensible vital role especially in the biomedical arena. Thus in an attempt to generate silver nanoparticles employing green, environmentally benign route, we have designed to converge mythology with technology, with the mystical production of silver nanoparticles, enabled by the blueberry beads of the plant Elaeocarpus granitrus Roxb., the Rudraksha. This non-degradable bead does not disintegrate, but retains the potentiality, even after unlimited production of silver nanoparticles, assisting infinite times. The extremely cost-efficient nanoparticles thus developed in a superiorly efficient manner were characterized through different techniques; like UV/visible spectroscopy, PL spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and nanoparticle size analysis.


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.


Author(s):  
Subbiah Murugesan ◽  
Sundaresan Bhuvaneswari ◽  
Vajiravelu Sivamurugan

Objective: In the present system, the green synthesis of silver nanoparticles using marine the red alga Spyridia fusiformis and antibacterial activity was carried out.Methods: The seaweed extract was used for the synthesis of AgNPs at room temperature. The silver nanoparticles were characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscope and X-ray diffraction (XRD) techniques. The antibacterial activity of biosynthesized silver nanoparticles was carried out by disc diffusion method against pathogenic bacteria.Results: The UV-visible spectroscopy revealed surface plasmon resonance at 450 nm. The FT-IR measurements showed the possible functional groups responsible for the formation of nanoparticles. The X-ray diffraction analysis showed that the particles were crystalline in nature. TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5–50 nm. The silver nanoparticles synthesized from the S. fusiformis showed higher activity and proved their efficacy in controlling the pathogenic bacterial strains. The nanoparticles showed highest inhibition activity on K. pneumaniae and S. aureus up to 26 and 24±0.01 mm at 100 μg/ml of nanoparticles.Conclusion: The synthesised AgNPs have shown the best antibacterial activity against human pathogens E. coli, K. pneumoniae, S. aureus and P. aeruginosa. The above eco-friendly AgNPs synthesis procedure could be a viable solution for industrial applications in the future and therapeutic needs.


2020 ◽  
Vol 10 (1) ◽  
pp. 1981-1992

The biosynthesis of metallic nanoparticles with plant extract is a promising alternative method to traditional chemical methods. Artemisia annua L is a well-known Chinese herb for its potent therapeutic anti-malarial activity and antitumor effects. Artemisinin, a sesquiterpene lactone derived from Artemisia annua L. Although artemisinin's anticancer effect has been extensively reported, the precise mechanisms underlying its cytotoxicity remain under intensive study. In the present work rapid and simple method for green synthesis of silver nanoparticles with the leaf extract of the therapeutic plant Artemisia annua L.was carried-out. The biologically synthesized silver nanoparticles were analyzed using spectroscopic methods like UV–visible spectroscopy. Fourier transforms infrared spectroscopy (FT-IR), Zeta potential, and particle size. The green Aa-AgNPs are characterized by spectral analysis by Nanodrop-UV-visible spectroscopy. The surface Plasmon resonance peak of silver nanoparticles in colloidal solution showed maximum absorption 441nm. FT-IR spectroscopy results indicate the O-H phenolic group's participation, C=C aromatic stretching, N-H secondary amide stretching, and C-H methylene group stretching. Dynamic light scattering measurements of Aa-AgNPs revealed that the particle size is between 5-20 nm. The zeta potential of the green synthesized Aa-AgNPs was found to be -26.1 mV. The high negative potential indicates long-term stability. The antioxidant activity of Aa-AgNPs was evaluated by DPPH assay. The results revealed that they have very good antioxidant activity, which can be useful as a potential free radical scavenger. The biosynthesized Aa-AgNPs of Artemisia annua exhibited good antimicrobial activity. The Aa-AgNPs showed excellent catalytic activity in the reduction of lemon yellow and orange-red food dyes. The Aa-AgNPs can also act as an effective seed germination agent. Hence it is concluded that the green Aa-AgNPs can be useful for various biomedical and industrial applications.


2021 ◽  
Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Silk sericin (SS) was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze drying. The extracted sericin exhibited excellent hydrophilicity, biodegradability, and reducing properties. Furthermore, silver nanoparticles conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher parent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2 + and COO- act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different to that for AgNO3 and sericin due to a change in crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong anti-bacterial activity against multi-drug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20 µg/mL. This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multi-drug-resistant microorganisms.


2020 ◽  
Vol 17 (2) ◽  
pp. 136-145
Author(s):  
Rajesh Kumar Meena ◽  
Risikesh Meena ◽  
Dinesh Kumar Arya ◽  
Sapana Jadoun ◽  
Renu Hada ◽  
...  

The silver nanoparticle was successfully synthesized by using the help of Phyllanthus emblica plant extract as a reducing agent and aqueous silver nitrate as the precursor. Moreover, physical and chemical methods are widely used for the synthesis of nanoparticles, but these methods have expensive and not ecofriendly. This study highlights the green, rapid, facile, cost-effective, and ecofriendly synthesis and synthesized nanoparticles also investigate their antibacterial activity. Synthesized silver nanoparticles are analyzed by different techniques of modes like XRD, UV-Visible spectroscopy, TEM, FTIR, and photoluminescence (PL). The prepared AgNPs show characteristic absorption peak in UV-Visible spectroscopy due to SPR (surface plasmonic resonance) band between 400 to 450 nm wavelength, which was confirmed by TEM (transmission electron microscopy) image. X-ray diffraction (XRD) results showed the crystalline nature of AgNPs as well as the size of nanoparticles calculated with the help of TEM (20-25 nm) and XRD (25 nm). ATR spectroscopy identified the functional groups that are involved in the reduction of silver ion to AgNPs and the PL spectrum indicates higher emission in the green region and low emission peak in the UV region. Antibacterial activity of AgNPs analyzed against with the help of E.Coli bacteria and the result shows that a higher concentration of AgNPs is increasing as well as a zone of inhibition increased. This method is environmentally friendly, of low cost, and less expensive method for the fabrication of AgNPs in abundance which can be further helpful for biosensor devices as well as for other applications such as pollutant degradation, pharmaceutical, and hydrogen production, etc therefore can promote the application of green technology for the production of AgNPs.


2016 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Elizabath Antony ◽  
Mythili Sathiavelu ◽  
Sathiavelu Arunachalam

Objective: The aim of current study was to synthesise silver nanoparticles from the leaf extracts (aqueous and methanol) of two medicinal plants Bauhinia acuminata and Biophytum sensitivum and to compare its biological activities with that of plant extract.Methods: Silver nanoparticles were synthesised, and it was characterised using UV-Visible spectroscopy and scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and GC-MS analysis were done for silver nanoparticle extract. The biological activities such as DPPH scavenging assay, haemolytic assay and antimicrobial assay were done for both nanoparticle and plant extract.Results: The UV-Visible spectroscopy showed the formation of nanoparticles in a size range of 400-460 nm. GC-MS analysis showed the presence of biologically active compounds like DL-alpha-tocopherol and Alpha-tocopherol-beta-D-mannose. FTIR analysis of silver nanoparticles and leaf extracts showed the formation of aldehydes, alkenes, amines, alcohols, etc., which confirmed the presence of the compounds present in plant extracts. SEM image showed the formation of nanoparticles of size 2 micrometre. Phytochemical analysis of plant extracts showed the presence of carbohydrates, phenols, flavonoids, saponins, tannins and terpenoids. The methanol extract of Bauhinia acuminata showed high DPPH scavenging activity of 90% compared to that of the silver nanoparticle. The percentage hemolysis of all extracts was found to be 6%-39%. The antimicrobial activity of leaf extracts showed excellent activity towards Bacillus cereus and Listeria monocytogens.Conclusion: The results of present study showed that the silver nanoparticle synthesised from the plant extract has many bioactive compounds and it was found to have significant biological activities but comparatively lesser than plant extract. It concludes the both plant and nanoparticle extract can be used as a potential resource for therapeutic purpose.


Sign in / Sign up

Export Citation Format

Share Document