scholarly journals Catalytic Behavior of Alkali Treated H-MOR in Selective Synthesis of Ethylenediamine via Condensation Amination of Monoethanolamine

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 386
Author(s):  
Feng-Wei Zhao ◽  
Qian Zhang ◽  
Feng Hui ◽  
Jun Yuan ◽  
Su-Ning Mei ◽  
...  

Catalytic behavior of alkali treated mordenite (H-MOR) in selective synthesis of ethylenediamine (EDA) via condensation amination of monoethanolamine (MEA) was investigated. Changes in the structural and acidic properties of alkali treated H-MOR were systematically investigated by N2 adsorption/desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), temperature programmed ammonia desorption (NH3-TPD), pyridine adsorption was followed by infrared spectroscopy (Py-IR), and X-ray fluorescence (XRF) analyses. The results show that alkali treatment produces more opening mesopores on the H-MOR crystal surfaces and leads to an increase in the number of B acid sites and the strength of the acid sites. The mesopores effectively enhance the rate of diffusion in the bulk catalyst. Moreover, the B acid sites are active sites in selective synthesis of EDA. Due to improvements in the diffusion conditions and reactivities, alkali treated H-MOR shows an excellent catalytic performance under mild reaction conditions. The conversion of MEA was 52.8% and selectivity to EDA increased to 93.6%, which is the highest selectivity achieved so far. Furthermore, possible mechanism for the formation of EDA is discussed.

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 490
Author(s):  
Rudaviro Garidzirai ◽  
Phillimon Modisha ◽  
Innocent Shuro ◽  
Jacobus Visagie ◽  
Pieter van Helden ◽  
...  

The effects of Mg and Zn dopants on the catalytic performance of Pt/Al2O3 catalyst were investigated for dehydrogenation of perhydrodibenzyltoluene (H18-DBT) as a liquid organic hydrogen carrier. Al2O3 supports were modified with Mg and Zn to produce Mg-Al2O3 and Zn-Al2O3 with a target loading of 3.8 wt.% for dopants. The modified supports were impregnated with chloroplatinic acid solution to produce the catalysts Pt/Al2O3, Pt/Mg-Al2O3 and Pt/Zn-Al2O3 of 0.5 wt.% Pt loading. Thereafter, the catalysts were characterised using inductively coupled plasma- optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, hydrogen temperature-programmed reduction, carbon-monoxide pulse chemisorption, ammonia temperature-programmed desorption, X-ray diffraction and transmission electron microscopy. The dehydrogenation experiments were performed using a horizontal plug flow reactor system and the catalyst time-on-stream was 22 h. Pt/Mg-Al2O3 showed the highest average hydrogen flowrate of 29 nL/h, while an average of 27 nL/h was obtained for both Pt/Al2O3 and Pt/Zn-Al2O3. This has resulted in a hydrogen yield of 80% for Pt/Mg-Al2O3, 71% for Pt/Zn-Al2O3 and 73% for Pt/Al2O3. In addition, the conversion of H18-DBT ranges from 99% to 92%, Pt 97–90% and 96–90% for Pt/Mg-Al2O3, Pt/Zn-Al2O3 and Pt/Al2O3, respectively. Following the latter catalyst order, the selectivity to dibenzyltoluene (H0-DBT) ranges from 78% to 57%, 75–51% and 71–45%. Therefore, Pt/Mg-Al2O3 showed improved catalytic performance towards dehydrogenation of H18-DBT.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 541 ◽  
Author(s):  
Haiping Xiao ◽  
Chaozong Dou ◽  
Hao Shi ◽  
Jinlin Ge ◽  
Li Cai

A series of poisoned catalysts with various forms and contents of sodium salts (Na2SO4 and Na2S2O7) were prepared using the wet impregnation method. The influence of sodium salts poisoned catalysts on SO2 oxidation and NO reduction was investigated. The chemical and physical features of the catalysts were characterized via NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The results showed that sodium salts poisoned catalysts led to a decrease in the denitration efficiency. The 3.6% Na2SO4 poisoned catalyst was the most severely deactivated with denitration efficiency of only 50.97% at 350 °C. The introduction of SO42− and S2O72− created new Brønsted acid sites, which facilitated the adsorption of NH3 and NO reduction. The sodium salts poisoned catalysts significantly increased the conversion of SO2–SO3. 3.6%Na2S2O7 poisoned catalyst had the strongest effect on SO2 oxidation and the catalyst achieved a maximum SO2–SO3-conversion of 1.44% at 410 °C. Characterization results showed sodium salts poisoned catalysts consumed the active ingredient and lowered the V4+/V5+ ratio, which suppressed catalytic performance. However, they increased the content of chemically adsorbed oxygen and the strength of V5+=O bonds, which promoted SO2 oxidation.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1118 ◽  
Author(s):  
Qiuwan Han ◽  
Dongyang Zhang ◽  
Jiuli Guo ◽  
Baolin Zhu ◽  
Weiping Huang ◽  
...  

The gold catalysts supported on various morphologies of α-Fe2O3 in carbon monoxide (CO) oxidation reaction have been studied for many researchers. However, how to improve the catalytic activity and thermal stability for CO oxidation is still important. In this work, an unusual morphology of α-Fe2O3 was prepared by hydrothermal method and gold nanoparticles were supported using a deposition-precipitation method. Au/α-Fe2O3 catalyst exhibited great activity for CO oxidation. The crystal structure and microstructure images of α-Fe2O3 were carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the size of gold nanoparticles was determined by transmission electron microscopy (TEM). X-ray photoelectron spectra (XPS) and Fourier transform infrared spectra (FTIR) results confirmed that the state of gold was metallic. The 1.86% Au/α-Fe2O3 catalyst calcined at 300 °C had the best catalytic performance for CO oxidation reaction and the mechanism for CO oxidation reaction was also discussed. It is highly likely that the small size of gold nanoparticle, oxygen vacancies and active sites played the decisive roles in CO oxidation reaction.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 642 ◽  
Author(s):  
Yan Gao ◽  
Tao Luan ◽  
Mingyang Zhang ◽  
Wenke Zhang ◽  
Wenchen Feng

A series of Mn−Fe−Ce−Ox/γ-Al2O3 nanocatalysts were synthesized with different Mn/Fe ratios for the catalytic oxidation of NO into NO2 and the catalytic elimination of NOx via fast selective catalytic reduction (SCR) reaction. The effects of Mn/Fe ratio on the physicochemical properties of the samples were analyzed by means of various techniques including N2 adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (TPR), NH3-temperature-programmed desorption (TPD) and NO-TPD, meanwhile, their catalytic performance was also evaluated and compared. Multiple characterizations revealed that the catalytic performance was highly dependent on the phase composition. The Mn15Fe15−Ce/Al sample with the Mn/Fe molar ratio of 1.0 presented the optimal structure characteristic among all tested samples, with the largest surface area, increased active components distributions, the reduced crystallinity and diminished particle sizes. In the meantime, the ratios of Mn4+/Mnn+, Fe2+/Fen+ and Ce3+/Cen+ in Mn15Fe15−Ce/Al samples were improved, which could enhance the redox capacity and increase the quantity of chemisorbed oxygen and oxygen vacancy, thus facilitating NO oxidation into NO2 and eventually promoting the fast SCR reaction. In accord with the structure results, the Mn15Fe15−Ce/Al sample exhibited the highest NO oxidation rate of 64.2% at 350 °C and the broadest temperature window of 75–350 °C with the NOx conversion >90%. Based on the structure–activity relationship discussion, the catalytic mechanism over the Mn−Fe−Ce ternary components supported by γ-Al2O3 were proposed. Overall, it was believed that the optimization of Mn/Fe ratio in Mn−Fe−Ce/Al nanocatalyst was an extremely effective method to improve the structure–activity relationships for NO pre-oxidation and the fast SCR reaction.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 175 ◽  
Author(s):  
Yan Gao ◽  
Tao Luan ◽  
Shitao Zhang ◽  
Wenchao Jiang ◽  
Wenchen Feng ◽  
...  

The nanocatalysts of Mn−Co/TiO2 and Mn−Fe/TiO2 were synthesized by hydrothermal method and comprehensively compared from nanostructures, catalytic performance, kinetics, and thermodynamics. The physicochemical properties of the nanocatalysts were analyzed by N2 adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), H2-temperature-programmed reduction (TPR), NH3-temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). Based on the multiple characterizations performed on Mn−Co/TiO2 and Mn−Fe/TiO2 nanocatalysts, it can be confirmed that the catalytic properties were decidedly dependent on the phase compositions of the nanocatalysts. The Mn−Co/TiO2 sample presented superior structure characteristics than Mn−Fe/TiO2, with the increased surface area, the promoted active components distribution, the diminished crystallinity, and the reduced nanoparticle size. Meanwhile, the Mn4+/Mnn+ ratios in the Mn−Co/TiO2 nanocatalyst were higher than Mn−Fe/TiO2, which further confirmed the better oxidation ability and the larger amount of Lewis acid sites and Bronsted acid sites on the sample surface. Compared to Mn−Fe/TiO2 nanocatalyst, Mn−Co/TiO2 nanocatalyst displayed the preferable catalytic property with higher catalytic activity and stronger selectivity in the temperature range of 75–250 °C. The results of mechanism and kinetic study showed that both Eley-Rideal mechanism and Langmuir-Hinshelwood mechanism reactions contributed to selective catalytic reduction of NO with NH3 (NH3-SCR) over Mn−Fe/TiO2 and Mn−Co/TiO2 nanocatalysts. In this test condition, the NO conversion rate of Mn−Co/TiO2 nanocatalyst was always higher than that of Mn−Fe/TiO2. Furthermore, comparing the reaction between doping transition metal oxides and NH3, the order of temperature−Gibbs free energy under the same reaction temperature is as follows: Co3O4 < CoO < Fe2O3 < Fe3O4, which was exactly consistent with nanostructure characterization and NH3-SCR performance. Meanwhile, the activity difference of MnOx exhibited in reducibility properties and Ellingham Diagrams manifested the promotion effects of cobalt and iron dopings. Generally, it might offer a theoretical method to select superior doping metal oxides for NO conversion by comprehensive comparing the catalytic performance with the insight from nanostructure, catalytic performance, reaction kinetics, and thermodynamics.


2011 ◽  
Vol 197-198 ◽  
pp. 992-995
Author(s):  
Wei Qiao Liu ◽  
Wei Ning Lei ◽  
Tong Ming Shang ◽  
Zhi Gang Mou ◽  
Heng Qiang Wang ◽  
...  

The ZSM-5 zeolites of various SiO2/Al2O3ratios were synthesized without using any template agent. X-ray diffraction (XRD), transmission electron microscope (TEM), temperature- programmed desorption of ammonia (NH3-TPD) and Fourier transform infrared spectroscopy (FT-IR) techniques were employed to analyze the natures of the as-synthesized zeolite. The results show that the as-synthesized non-templated ZSM-5 zeolite is very pure. Meanwhile, Lewis acid sites and Bronsted acid sites are all presented in the as-synthesized non-templated HZSM-5 zeolite. The number of acid sites decreases almost linearly with the increasing of SiO2/Al2O3ratio of the zeolite. In addition, the reaction of propylene oligomerization was carried out over the as-synthesized non-templated HZSM-5 zeolite to evaluate the catalytic properties. The results show that the catalytic activity of propylene oligomerization decreases with the increasing of SiO2/Al2O3ratio.


Author(s):  
Parisa Sadeghpour ◽  
Mohammad Haghighi ◽  
Mehrdad Esmaeili

Aim and Objective: Effect of two different modification methods for introducing Ni into ZSM-5 framework was investigated under high temperature synthesis conditions. The nickel successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance. Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM-5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BET-BJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPDNH3) were applied to investigate the physicochemical properties. Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3 /gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores. Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 400
Author(s):  
Xiaohua Cao ◽  
Jichang Lu ◽  
Yutong Zhao ◽  
Rui Tian ◽  
Wenjun Zhang ◽  
...  

Praseodymium (Pr)-promoted MCM-41 catalyst was investigated for the catalytic decomposition of methyl mercaptan (CH3SH). Various characterization techniques, such as X-ray diffraction (XRD), N2 adsorption–desorption, temperature-programmed desorption of ammonia (NH3-TPD) and carbon dioxide (CO2-TPD), hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectrometer (XPS), were carried out to analyze the physicochemical properties of material. XPS characterization results showed that praseodymium was presented on the modified catalyst in the form of praseodymium oxide species, which can react with coke deposit to prolong the catalytic stability until 120 h. Meanwhile, the strong acid sites were proved to be the main active center over the 10% Pr/MCM-41 catalyst by NH3-TPD results during the catalytic elimination of methyl mercaptan. The possible reaction mechanism was proposed by analyzing the product distribution results. The final products were mainly small-molecule products, such as methane (CH4) and hydrogen sulfide (H2S). Dimethyl sulfide (CH3SCH3) was a reaction intermediate during the reaction. Therefore, this work contributes to the understanding of the reaction process of catalytic decomposition methyl mercaptan and the design of anti-carbon deposition catalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Mansurbek Urol ugli Abdullaev ◽  
Sungjune Lee ◽  
Tae-Wan Kim ◽  
Chul-Ung Kim

Among the zeolitic catalysts for the ethylene-to-propylene (ETP) reaction, the SSZ-13 zeolite shows the highest catalytic activity based on both its suitable pore architecture and tunable acidity. In this study, in order to improve the propylene selectivity further, the surface of the SSZ-13 zeolite was modified with various amounts of tungsten oxide ranging from 1 wt% to 15 wt% via a simple incipient wetness impregnation method. The prepared catalysts were characterized with several analysis techniques, specifically, powder X-ray diffraction (PXRD), Raman spectroscopy, temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and N2 sorption, and their catalytic activities were investigated in a fixed-bed reactor system. The tungsten oxide-modified SSZ-13 catalysts demonstrated significantly improved propylene selectivity and yield compared to the parent H-SSZ-13 catalyst. For the tungsten oxide loading, 10 wt% loading showed the highest propylene yield of 64.9 wt%, which was 6.5 wt% higher than the pristine H-SSZ-13 catalyst. This can be related to not only the milder and decreased strong acid sites but also the diffusion restriction of bulky byproducts, as supported by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) observation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longfei Lin ◽  
Mengtian Fan ◽  
Alena M. Sheveleva ◽  
Xue Han ◽  
Zhimou Tang ◽  
...  

AbstractOptimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon–carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon–carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.


Sign in / Sign up

Export Citation Format

Share Document