photosynthetic co2 assimilation
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Charlotte Seydel ◽  
Julia Biener ◽  
Vladimir Brodsky ◽  
Svenja Eberlein ◽  
Thomas Naegele

Quantification of system dynamics is a central aim of mathematical modelling in biology. Defining experimentally supported functional relationships between molecular entities by mathematical terms enables the application of computational routines to simulate and analyse the underlying molecular system. In many fields of natural sciences and engineering, trigonometric functions are applied to describe oscillatory processes. As biochemical oscillations occur in many aspects of biochemistry and biophysics, Fourier analysis of metabolic functions promises to quantify, describe and analyse metabolism and its reaction towards environmental fluctuations. Here, Fourier polynomials were developed from experimental time-series data and combined with block diagram simulation of plant metabolism to study heat shock response of photosynthetic CO2 assimilation and carbohydrate metabolism. Findings suggest that increased capacities of starch biosynthesis stabilize photosynthetic CO2 assimilation under transient heat exposure. Among soluble sugars, fructose concentrations were observed to fluctuate least under heat exposure which might be the consequence of high respiration rates under elevated temperature. Finally, Col-0 and two mutants of Arabidopsis thaliana with deficiencies in starch and sucrose metabolism were discriminated by fundamental frequencies of Fourier polynomials across different experiments. This suggests balance modelling based on Fourier polynomials as a suitable approach for mathematical analysis of dynamic plant-environment interactions.


2020 ◽  
Vol 22 (1) ◽  
pp. 342
Author(s):  
Ginga Shimakawa ◽  
Ayaka Kohara ◽  
Chikahiro Miyake

In eukaryotic algae, respiratory O2 uptake is enhanced after illumination, which is called light-enhanced respiration (LER). It is likely stimulated by an increase in respiratory substrates produced during photosynthetic CO2 assimilation and function in keeping the metabolic and redox homeostasis in the light in eukaryotic cells, based on the interactions among the cytosol, chloroplasts, and mitochondria. Here, we first characterize LER in photosynthetic prokaryote cyanobacteria, in which respiration and photosynthesis share their metabolisms and electron transport chains in one cell. From the physiological analysis, the cyanobacterium Synechocystis sp. PCC 6803 performs LER, similar to eukaryotic algae, which shows a capacity comparable to the net photosynthetic O2 evolution rate. Although the respiratory and photosynthetic electron transports share the interchain, LER was uncoupled from photosynthetic electron transport. Mutant analyses demonstrated that LER is motivated by the substrates directly provided by photosynthetic CO2 assimilation, but not by glycogen. Further, the light-dependent activation of LER was observed even with exogenously added glucose, implying a regulatory mechanism for LER in addition to the substrate amounts. Finally, we discuss the physiological significance of the large capacity of LER in cyanobacteria and eukaryotic algae compared to those in plants that normally show less LER.


2020 ◽  
Author(s):  
Feng Yang ◽  
Qinlin Liu ◽  
Yajiao Cheng ◽  
Lingyang Feng ◽  
Xiaoling Wu ◽  
...  

Abstract Background: Shading includes low light intensity and varying quality. However, a low red/far-red (R/Fr) ratio of light is a signal that affects plant growth in intercropping and close- planting systems. Thus, the low R/Fr ratio uncoupling from shading conditions was assessed to identify the effect of light quality on photosynthesis and CO2 assimilation. Soybean plants were grown in a growth chamber with natural solar radiation under four treatments, that is, normal (N, sunlight), N+Fr, Low (L) +Fr, and L light. Results: Low R/Fr ratio significantly increased the total biomass, leaf area, starch and sucrose contents, chlorophyll content, net photosynthetic rate, and quantum efficiency of the photosystem II compared with normal R/Fr ratio under the same light level (P < 0.05). Proteomic analysis of soybean leaves under different treatments was performed to quantify the changes in photosynthesis and CO2 assimilation in the chloroplast. Among the 7834 proteins quantified, 12 showed a > 1.3-fold change in abundance, of which 1 was related to porphyrin and chlorophyll metabolism, 2 were involved in photosystem I (PS I), 4 were associated with PS II, 3 proteins participated in photosynthetic electron transport, and 2 were involved in starch and sucrose metabolism. The dynamic change in these proteins indicates that photosynthesis and CO2 assimilation were maintained in the L treatment by up-regulating the component protein levels compared with those in N treatment. Although low R/Fr ratio increased the photosynthetic CO2 assimilation parameters, the differences in most protein expression levels in N+Fr and L+Fr treatments compared with those in N treatment were insignificant. Similar trends were found in gene expression through quantitative reverse transcription polymerase chain reaction excluding the gene expression of sucrose synthase possible because light environment is one of the factors affecting carbon assimilation. Conclusions: Low R/Fr ratio (high Fr light) can increase the photosynthetic CO2 assimilation in the same light intensity by improving the photosynthetic efficiency of the photosystems.


2020 ◽  
Author(s):  
Feng Yang ◽  
Qinlin Liu ◽  
Yajiao Cheng ◽  
Lingyang Feng ◽  
Xiaoling Wu ◽  
...  

Abstract Background: Shading includes low light intensity and varying quality. However, a low red/far-red (R/Fr) ratio of light is a signal that affects plant growth in intercropping and close- planting systems. Thus, the low R/Fr ratio uncoupling from shading conditions was assessed to identify the effect of light quality on photosynthesis and CO2 assimilation. Soybean plants were grown in a growth chamber with natural solar radiation under four treatments, that is, normal (N, sunlight), N+Fr, Low (L) +Fr, and L light. Results: Low R/Fr ratio significantly increased the total biomass, leaf area, starch and sucrose contents, chlorophyll content, net photosynthetic rate, and quantum efficiency of the photosystem II compared with normal R/Fr ratio under the same light level (P < 0.05). Proteomic analysis of soybean leaves under different treatments was performed to quantify the changes in photosynthesis and CO2 assimilation in the chloroplast. Among the 7834 proteins quantified, 12 showed a > 1.3-fold change in abundance, of which 1 was related to porphyrin and chlorophyll metabolism, 2 were involved in photosystem I (PS I), 4 were associated with PS II, 3 proteins participated in photosynthetic electron transport, and 2 were involved in starch and sucrose metabolism. The dynamic change in these proteins indicates that photosynthesis and CO2 assimilation were maintained in the L treatment by up-regulating the component protein levels compared with those in N treatment. Although low R/Fr ratio increased the photosynthetic CO2 assimilation parameters, the differences in most protein expression levels in N+Fr and L+Fr treatments compared with those in N treatment were insignificant. Similar trends were found in gene expression through quantitative reverse transcription polymerase chain reaction excluding the gene expression of sucrose synthase possible because light environment is one of the factors affecting carbon assimilation. Conclusions: Low R/Fr ratio (high Fr light) can increase the photosynthetic CO2 assimilation in the same light intensity by improving the photosynthetic efficiency of the photosystems.


2020 ◽  
Author(s):  
Feng Yang ◽  
Qinlin Liu ◽  
Yajiao Cheng ◽  
Lingyang Feng ◽  
Xiaoling Wu ◽  
...  

Abstract Background: Shading includes low light intensity and varying quality. However, a low red/far-red (R/Fr) ratio of light is a signal that affects plant growth in intercropping and close- planting systems. Thus, the low R/Fr ratio uncoupling from shading conditions was assessed to identify the effect of light quality on photosynthesis and CO2 assimilation. Soybean plants were grown in a growth chamber with natural solar radiation under four treatments, that is, normal (N, sunlight), N+Fr, Low (L) +Fr, and L light. Results: Low R/Fr ratio significantly increased the total biomass, leaf area, starch and sucrose contents, chlorophyll content, net photosynthetic rate, and quantum efficiency of the photosystem II compared with normal R/Fr ratio under the same light level (P < 0.05). Proteomic analysis of soybean leaves under different treatments was performed to quantify the changes in photosynthesis and CO2 assimilation in the chloroplast. Among the 7834 proteins quantified, 12 showed a > 1.3-fold change in abundance, of which 1 was related to porphyrin and chlorophyll metabolism, 2 were involved in photosystem I (PS I), 4 were associated with PS II, 3 proteins participated in photosynthetic electron transport, and 2 were involved in starch and sucrose metabolism. The dynamic change in these proteins indicates that photosynthesis and CO2 assimilation were maintained in the L treatment by up-regulating the component protein levels compared with those in N treatment. Although low R/Fr ratio increased the photosynthetic CO2 assimilation parameters, the differences in most protein expression levels in N+Fr and L+Fr treatments compared with those in N treatment were insignificant. Similar trends were found in gene expression through quantitative reverse transcription polymerase chain reaction excluding the gene expression of sucrose synthase possible because light environment is one of the factors affecting carbon assimilation. Conclusions: Low R/Fr ratio (high Fr light) can increase the photosynthetic CO2 assimilation in the same light intensity by improving the photosynthetic efficiency of the photosystems.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 88 ◽  
Author(s):  
Fermín Morales ◽  
María Ancín ◽  
Dorra Fakhet ◽  
Jon González-Torralba ◽  
Angie L. Gámez ◽  
...  

Increased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO2 assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO2 assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.


2019 ◽  
Author(s):  
Feng Yang ◽  
Qinlin Liu ◽  
Yajiao Cheng ◽  
Lingyang Feng ◽  
Xiaoling Wu ◽  
...  

Abstract Background: Shading includes low light intensity and varying quality. However, a low red/far-red (R/Fr) ratio of light is a signal that affects plant growth in intercropping and close- planting systems. Thus, the low R/Fr ratio uncoupling from shading conditions was assessed to identify the effect of light quality on photosynthesis and CO2 assimilation. Soybean plants were grown in a growth chamber with natural solar radiation under four treatments, that is, normal (N, sunlight), N+Fr, Low (L) +Fr, and L light. Results: Low R/Fr ratio significantly increased the total biomass, leaf area, starch and sucrose contents, chlorophyll content, net photosynthetic rate, and quantum efficiency of the photosystem II compared with normal R/Fr ratio under the same light level (P < 0.05). Proteomic analysis of soybean leaves under different treatments was performed to quantify the changes in photosynthesis and CO2 assimilation in the chloroplast. Among the 7834 proteins quantified, 12 showed a > 1.3-fold change in abundance, of which 1 was related to porphyrin and chlorophyll metabolism, 2 were involved in photosystem I (PS I), 4 were associated with PS II, 3 proteins participated in photosynthetic electron transport, and 2 were involved in starch and sucrose metabolism. The dynamic change in these proteins indicates that photosynthesis and CO2 assimilation were maintained in the L treatment by up-regulating the component protein levels compared with those in N treatment. Although low R/Fr ratio increased the photosynthetic CO2 assimilation parameters, the differences in most protein expression levels in N+Fr and L+Fr treatments compared with those in N treatment were insignificant. Similar trends were found in gene expression through quantitative reverse transcription polymerase chain reaction excluding the gene expression of sucrose synthase possible because light environment is one of the factors affecting carbon assimilation. Conclusions: Low R/Fr ratio (high Fr light) can increase the photosynthetic CO2 assimilation in the same light intensity by improving the photosynthetic efficiency of the photosystems.


2019 ◽  
Author(s):  
Feng Yang ◽  
Qinlin Liu ◽  
Yajiao Cheng ◽  
Lingyang Feng ◽  
Xiaoling Wu ◽  
...  

Abstract Background: Shading includes low light intensity and varying quality. However, a low red/far-red (R/Fr) ratio of light is a signal that affects plant growth in intercropping and close- planting systems. Thus, the low R/Fr ratio uncoupling from shading conditions was assessed to identify the effect of light quality on photosynthesis and CO2 assimilation. Soybean plants were grown in a growth chamber with natural solar radiation under four treatments, that is, normal (N, sunlight), N+Fr, Low (L) +Fr, and L light. Results: Low R/Fr ratio significantly increased the total biomass, leaf area, starch and sucrose contents, chlorophyll content, net photosynthetic rate, and quantum efficiency of the photosystem II compared with normal R/Fr ratio under the same light level (P < 0.05). Proteomic analysis of soybean leaves under different treatments was performed to quantify the changes in photosynthesis and CO2 assimilation in the chloroplast. Among the 7834 proteins quantified, 12 showed a > 1.3-fold change in abundance, of which 1 was related to porphyrin and chlorophyll metabolism, 2 were involved in photosystem I (PS I), 4 were associated with PS II, 3 proteins participated in photosynthetic electron transport, and 2 were involved in starch and sucrose metabolism. The dynamic change in these proteins indicates that photosynthesis and CO2 assimilation were maintained in the L treatment by up-regulating the component protein levels compared with those in N treatment. Although low R/Fr ratio increased the photosynthetic CO2 assimilation parameters, the differences in most protein expression levels in N+Fr and L+Fr treatments compared with those in N treatment were insignificant. Similar trends were found in gene expression through quantitative reverse transcription polymerase chain reaction excluding the gene expression of sucrose synthase possible because light environment is one of the factors affecting carbon assimilation. Conclusions: Low R/Fr ratio (high Fr light) can increase the photosynthetic CO2 assimilation in the same light intensity by improving the photosynthetic efficiency of the photosystems.


Sign in / Sign up

Export Citation Format

Share Document