scholarly journals A role for glial fibrillary acidic protein (GFAP)-expressing cells in the regulation of gonadotropin-releasing hormone (GnRH) but not arcuate kisspeptin neuron output in male mice

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Charlotte Vanacker ◽  
Richard Anthony Defazio ◽  
Charlene M Sykes ◽  
Suzanne M Moenter

GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized GFAP-expressing astrocytes play a role regulating GnRH and/or KNDy neuron activity and LH release. We used adenoassociated viruses to target designer receptor exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.

2021 ◽  
Author(s):  
Charlotte Vanacker ◽  
R. Anthony DeFazio ◽  
Charlene M. Sykes ◽  
Suzanne M. Moenter

AbstractGnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized GFAP-expressing astrocytes play a role regulating GnRH and/or KNDy neuron activity and LH release. We used adenoassociated viruses to target designer receptor exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.


2020 ◽  
Author(s):  
Juliana Bezerra Medeiros de Lima ◽  
Lucas Kniess Debarba ◽  
Manal Khan ◽  
Chidera Ubah ◽  
Olesya Didyuk ◽  
...  

AbstractGrowth hormone (GH) receptor (GHR), expressed in different brain regions, is known to participate in the regulation of whole-body energy homeostasis and glucose metabolism. However, GH activation of these GHR-expressing neurons is less studied. We have generated a novel GHR-driven Cre recombinase transgenic mouse line (GHRcre) in combination with the floxed tdTomato reporter mouse line we tracked and activated GHR-expressing neurons in different regions of the brain. We focused on neurons of the hypothalamic arcuate nucleus (ARC) where GHR was shown to elicit a negative feedback loop that regulates GH production. We found that ARCGHR+ neurons are co-localized with AgRP, GHRH, and somatostatin neurons, which were activated by GH stimulation. Using designer receptors exclusively activated by designer drugs (DREADDs) to control GHRARC neuronal activity, we revealed that activation of GHRARC neurons was sufficient in regulating distinct aspects of energy balance and glucose metabolism. Overall, our study provides a novel mouse model to study in vivo regulation and physiological function of GHR-expressing neurons in various brain regions. Furthermore, we identified for the first time specific neuronal population that responds to GH and directly linked it to metabolic responses in vivo.


2009 ◽  
Vol 297 (1) ◽  
pp. R100-R110 ◽  
Author(s):  
Csilla Becskei ◽  
Thomas A. Lutz ◽  
Thomas Riediger

Fasting activates orexigenic neuropeptide Y neurons in the hypothalamic arcuate nucleus (ARC) of mice, which is reversed by 2 h refeeding with standard chow. Here, we investigated the contribution of diet-derived macronutrients and anorectic hormones to the reversal of the fasting-induced ARC activation during 2 h refeeding. Refeeding of 12-h-fasted mice with a cellulose-based, noncaloric mash induced only a small reduction in c-Fos expression. Refeeding with diets, containing carbohydrates, protein, or fat alone reversed it similar to chow; however, this effect depended on the amount of intake. The fasting-induced ARC activation was unchanged by subcutaneously injected amylin, CCK (both 20 μg/kg), insulin (0.2 U/kg and 0.05 U/kg) or leptin (2.6 mg/kg). Insulin and leptin had no effect on c-Fos expression in neuropeptide Y or proopiomelanocortin-containing ARC neurons. Interestingly, CCK but not amylin reduced the ghrelin-induced c-Fos expression in the ARC in ad libitum-fed mice, suggesting that CCK may inhibit orexigenic ARC neurons when acting together with other feeding-related signals. We conclude that all three macronutrients and also non-nutritive, ingestion-dependent signals contribute to an inhibition of orexigenic ARC neurons after refeeding. Similar to the previously demonstrated inhibitory in vivo action of peptide YY, CCK may be a postprandial mediator of ARC inhibition.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 463-468 ◽  
Author(s):  
Elizabeth P. Bless ◽  
Heather J. Walker ◽  
Kwok W. Yu ◽  
J. Gabriel Knoll ◽  
Suzanne M. Moenter ◽  
...  

Neurons that synthesize GnRH control the reproductive axis and migrate over long distances and through different environments during development. Prior studies provided strong clues for the types of molecules encountered and movements expected along the migratory route. However, our studies provide the first real-time views of the behavior of GnRH neurons in the context of an in vitro preparation that maintains conditions comparable to those in vivo. The live views provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more changes in direction after they enter the brain. Perturbations of guiding fibers distal to moving GnRH neurons in the nasal compartment influenced movement without detectable changes in the fibers in the immediate vicinity of moving GnRH neurons. This suggests that the use of fibers by GnRH neurons for guidance may entail selective signaling in addition to mechanical guidance. These studies establish a model to evaluate the influences of specific molecules that are important for their migration.


1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1983 ◽  
Vol 103 (3) ◽  
pp. 293-301 ◽  
Author(s):  
Michael Warnhoff ◽  
Gunter Dorsch ◽  
Karl M. Pirke

Abstract. A perfusion system was developed in which isolated median eminences (ME) were stimulated in vitro by depolarizing agents such as potassium and veratridine. Potassium concentrations between 30 and 80 mm released increasing amounts of luteinizing hormone-releasing hormone (LRH) from the MEs of starved and control rats. Veratridine at a concentration of 50 μm caused a more prolonged LRH release in both starved and control animals. LRH secretion in vitro was slightly, though not under all conditions, significantly greater in rats starved for 5 days. The testosterone (T)-LH feedback was studied by castrating the animals and substituting various doses of T through implantation of T-releasing capsules of different sizes. The concentration in plasma, which can prevent the castration-induced much smaller in starved than in control rats. The in vitro release of LRH evoked by 80 mm potassium was not different for starved and fed rats under various feedback conditions. Both groups revealed decreased in vitro release of LRH when castrated animals were not substituted with T. The effect of castration was studied from 1 to 28 days. The plasma LH values rapidly increased in starved and control animals, indicating that the hypothalamic responsestration is not delayed by starvation. The release in vitro of LRH decreased from the first to the fifth day and remained constant thereafter. No significant difference between starved and fed rats was observed. The experiments indicate that the 'releasable pool' of LRH in vitro is greater under conditions of reduced LH release in vivo. The basic mechanism of depolarization-induced exocytosis of LRH from the ME is intact in starved animals.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5398-5398
Author(s):  
Bianca Maria Ricerca ◽  
Salvatore Vagnoni ◽  
Anna Maria D’Amore ◽  
Enrico Di Stasio ◽  
Celestino Pio Lombardi ◽  
...  

Abstract Six Italian scuba divers, three men and three women, lived permanently for 14 days at a depth of 8 – 10 metres under the sea level breathing a mixture with the same composition of the air at a pressure ranging between 1,8–2 ATA (Hyperoxic Air-HOA), under the control of a physician’s team. This experience called Abyss project: the “underwater home” was born as a Guinness record attempt, but it had been also surrounded by scientific attention giving the opportunity to collect scientific data. The effect of long-term diving on blood in professional and recreational-professional scuba divers has not been studied. Oxygen is the main regulator of Epo production through the activation or degradation of HIF-1α, the most important transcriptional factor of Epo gene. Hypoxia favours HIF-1α activation, on the contrary hyperoxia favours its degradation. In this case, the excess of Reactive Oxygen Species (ROS), play a crucial role. In the six subjects of Abyss Project, we evaluated S-Epo (Immunoturbidimetric method-Immulite Medical System), CBC and differential (ADVIA 120 Automated Hematology System-Bayer Diagnostics), Reticulocyte count (absolute and perceptual) (Beckman Coulter LH 750-IL Instruments).and the most important hemato-chemical parameters with this timing: before immersion (TIME 0), 7 days (TIME 1), 14 days (TIME 2) after beginning the dive, two hours (TIME 3) and 24 hours (TIME 4) after the resurface. The aim of our study was to investigate if erythropoiesis is affected by a so long diving. Hgb, as far as the hematochemical parameters did not change while Ht, s-Epo, O/P ratio absolute and perceptual reticulocyte counts decline progressively from TIME 0 until TIME 3. At Time 4 (24 hours after the resurface) a rise of Epo production was observed. No significant variation of renal function was registered, According to Repeated Measures ANOVA test, these results are statistically significant (see the Table). We retain that the different results of Hgb and Ht reflect a variation of hydration state. Similar results were obtained previously by other Authors (Balestra C et al J Appl Physiol 2006) although in different experimental conditions and for shorter exposition. Their experiment was conducted in two steps: hyperoxia (100% O2, two hours, with a “nonrebreather” mask) in normobarysm; hyperoxia in hyperbarysm (100% O2, 2,5 ATA, 1,5 hours, in hyperbaric chamber). They observed the rise of s-Epo only 24 hours after the exposition to normobarism, not after the exposition to hyperbarism. This phenomenon was called “normobaric oxygen paradox”. Our results confirm that the s-Epo production is affected by the exposition to hyperbarism. It could be hypothesize that the Oxygen dissolved in the plasma influences the s-Epo production, moving the equilibrium between reduction and oxidation towards the last. In fact, no relevant variation of the Hgb Oxygen transport was observed. The reverse of this equilibrium should determine the rise of s-Epo 24 hours after the resurface. Taking in account our results and those of Balestra, it seem that Oxygen pressure, more than O2 concentration, is crucial for the “normobaric oxygen paradox”. Finally, although Hgb did not change, some signs of impairment of erythropoiesis are already present. In fact, absolute and perceptual reticulocyte counts decline from Time 0 to time 4. Taking into account the timing of erythropoiesis, it is predictable that anemia would be a clinical problem if the exposition continued. In fact, erythropoiesis could suffer from the Epo reduction and also from the enhancement of the apoptosis. The last effect could be produced either by the Epo reduction, either by a direct effect of hyperoxia as demonstrated in vitro (Ganguly BJ Apoptosis 2002). T Hgb g/dl Ht Ret% Ret 10^9/l s-Epo mU/ml 0 14,03±1,25 41,32±2,81 1,19±0,35 56,40±22,09 11,58±3,09 1 13,72±1,39 40,03±3,37 1,08±0,50 50,72±26,16 6,28±3,20 2 13,33±1,80 38,83±4,35 0,72±0,23 32,58±12,82 4,23±1,59 3 13,40±1,43 39,77±3,38 0,67±0,17 30,18±8,90 4,50±1,73 4 13,67±1,35 39,82±3,43 0,71±0,28 32,96±13,44 14,02±5.05 P n.s. <0.0001 <0.0001 <0.0001 <0.0001


1992 ◽  
Vol 132 (2) ◽  
pp. 277-283 ◽  
Author(s):  
G. Robinson ◽  
J. J. Evans ◽  
K. J. Catt

ABSTRACT Gonadotrophin-releasing activity of oxytocin has previously been demonstrated in vitro and in vivo. This study investigated whether oxytocin is also able to induce LH accumulation in pituitary cells. Following trypsin digestion and mechanical dispersion, pituitary cells from female rats were incubated with oxytocin (100 nmol/l) for 24 h. LH release stimulated by oxytocin increased (P < 0·001) progressively during the incubation indicating a different secretory pattern from the more rapid but less sustained secretion stimulated by gonadotrophin-releasing hormone. Oxytocin also enhanced (P < 0·01) total LH accumulation in the incubation system (released plus cell contents) which was apparent after 7–11 h of stimulation. The release of LH stimulated by oxytocin was reduced by the protein synthesis inhibitor cycloheximide (10 μmol/l). However, cycloheximide did not completely block oxytocin-stimulated LH release; there remained some LH release above that seen in non-stimulated controls (P < 0·01) revealing the presence of a cycloheximide-resistant component in the release mechanism. Furthermore, accumulation of total LH in 24 h incubations was suppressed (P < 0·01) by cycloheximide. The advancement in LH release which oxytocin has been shown to induce in vivo in pro-oestrous rats was accompanied by an early reduction of pituitary LH stores. However, the fall normally observed in LH content during the surge was markedly attenuated by the oxytocin treatment. Thus, loss of pituitary LH stores was less in oxytocin-treated rats than in saline-treated controls, even though net LH release into plasma was increased. Therefore, oxytocin stimulated the replenishment of LH stores. Although the mechanism(s) remains to be defined and the relationships between in-vitro and in-vivo results are as yet uncharacterized, the present study demonstrates that oxytocin treatment stimulates LH production in both dispersed cells and intact pituitaries in situ. Journal of Endocrinology (1992) 132, 277–283


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1159-1165 ◽  
Author(s):  
Stuart A. Tobet ◽  
Gerald A. Schwarting

Neurons that synthesize GnRH are critical brain regulators of the reproductive axis, yet they originate outside the brain and must migrate over long distances and varied environments to get to their appropriate positions during development. Many studies, past and present, are providing clues for the types of molecules encountered and movements expected along the migratory route. Recent studies provide real-time views of the behavior of GnRH neurons in the context of in vitro preparations that model those in vivo. Live images provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more alterations in direction after they enter the brain. The heterogeneity of molecular phenotypes for GnRH neurons likely ensures that multiple external factors will be found that regulate the migration of different portions of the GnRH neuronal population at different steps along the route. Molecules distributed in gradients both in the peripheral olfactory system and basal forebrain may be particularly influential in directing the appropriate movement of GnRH neurons along their arduous migration. Molecules that mediate the adhesion of GnRH neurons to changing surfaces may also play critical roles. It is likely that the multiple external factors converge on selective signal transduction pathways to engage the mechanical mechanisms needed to modulate GnRH neuronal movement and ultimately migration.


1990 ◽  
Vol 127 (1) ◽  
pp. 149-159 ◽  
Author(s):  
S. Muttukrishna ◽  
P. G. Knight

ABSTRACT Primary cultures of ovine pituitary cells (from adult ewes) were used to investigate the actions of steroid-free bovine follicular fluid (bFF) and highly-purified Mr 32 000 bovine inhibin on basal and gonadotrophin-releasing hormone (GnRH)-induced release of FSH and LH. Residual cellular contents of each hormone were also determined allowing total gonadotrophin content/well to be calculated. As in rats, both crude and highly purified inhibin preparations promoted a dose (P < 0·001)- and time (P < 0·001)-dependent suppression of basal and GnRH-induced release of FSH as well as an inhibition of FSH synthesis, reflected by a fall in total FSH content/well. However, while neither inhibin preparation affected basal release of LH or total LH content/well, GnRH-induced LH release was significantly (P< 0·001) increased by the presence of either bFF (+ 75%) or highly-purified inhibin (+ 64%) in a dose- and time-dependent manner. This unexpected action of bFF on GnRH-induced LH release was abolished in the presence of 5 μl specific anti-inhibin serum, confirming that the response was indeed mediated by inhibin. Furthermore, neither oestradiol-17β (1 pmol/l–10 nmol/l) nor monomeric α-subunit of bovine inhibin (2·5–40 ng/ml) significantly affected basal or GnRH-induced release of LH. These in-vitro findings for the ewe lend support to a number of recent in-vivo observations and indicate that, in addition to its well-documented suppressive effect on the synthesis and secretion of FSH, inhibin may actually facilitate LH release in this species, in marked contrast to its action in the rat. Journal of Endocrinology (1990) 127, 149–159


Sign in / Sign up

Export Citation Format

Share Document