trap liquid
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Noadia Barroso ◽  
Matheus Augusto Santos ◽  
Paula K Okuro ◽  
Rosiane L. Cunha

Consumers are becoming aware of the relevance of eating low levels of trans and saturated fats in processed foods. In addition, many countries are adopting regulatory measures on the use of these ingredients. For this reason, the exploration of new technologies capable of producing structures that trap liquid oil (composed of unsaturated fatty acids, considered healthier) has been widely investigated in order to replace saturated and trans fats in food products. One of the most promising technologies is the so-called oleogels, which present a great challenge to mimic sensory attributes related to the texture of processed foods based on saturated fats. In this review, we discuss how the different approaches used in the production of oleogels, direct or indirect methods, as well as compositional variables, such as oleogelators and mixing ratio, can directly influence the mechanical properties of these structures. An overview of the parameters that can interfere with these properties contributes to a better understanding of the building of the oleogels and their possible applications.


Author(s):  
Yi Hsu ◽  
Yingtao Liu

Recently, the development of hydrophobic nanoporous liquids has drawn increased attention, especially for the applications of energy absorption and impact protection. Although significant amount of research has been conducted to synthesis and characterize materials to protect structures from impact damage, the tradition methods needed to convert kinetic energy to other forms, such as heat and cell bulking, during impact protection. Due to their high energy absorption efficiency, hydrophobic nanoporous particle liquids are one of the most attractive impact mitigation materials. When impacted, such particles directly trap liquid molecules inside the non-wetting surface of nanopores in the particles. The captured impact energy is simply stored temporarily and isolated from the original energy transmission path. In this paper we investigate the energy absorption efficiency of multiple nanoporous particles and liquids. Inorganic nanoporous silica nanoparticles are investigated as the hydrophobic materials. Nanoporous particle liquids are prepared by dispersing the nano-materials in deionized water. The effects of small molecular promoters, such as methanol and ethanol, on energy absorption efficiency, are studied in this paper. The energy absorption efficiency of these liquids is experimentally characterized using an Instron mechanical testing frame and in-house develop stainless steel hydraulic cylinder system under quasi-static load conditions.


Sign in / Sign up

Export Citation Format

Share Document