scholarly journals Parametric Characterization and Analysis of Pounding Behavior Adjacent Multi-Storied Buildings of Varying Heights

Author(s):  
Sudhir Kumar

Abstract: Many past earthquake studies show that during strong vibrations, the adjacent building structures which are closely spaced to each other are vulnerable to severe damage when the adjacent buildings are not at an adequate distance to accommodate their relative displacements. The primary goal of this research is to find out the minimum separation gap between buildings of varying height at the same floor-to-floor height level. SAP 2000 software is used to analyze the structural behavior of building during the earthquake.Three building models are taken for the study, one is six floors (G+6) and another two are nine floors (G+9), and twelve floors (G+12) respectively. Six floors (G+6)& twelve floors (G+12) structures have the same floor to floor height and plan and same beam and column size (equal stiffness) and G+9 buildings have floor to floor height are same but different beam and column sizes (different stiffness). The linear dynamic (RSA) analysis method is used to calculate the response (Displacement, frequency at fundamental time, Base Shear) of the structure at different floors levels. Response (top story displacements) calculated from the response spectrum is compared with the provisions of seismic gap per story height given in IS 4326: 2005.

2013 ◽  
Vol 40 (7) ◽  
pp. 655-662
Author(s):  
George K. Georgoussis

Building structures of low or medium height are usually designed with a pseudostatic approach using a base shear much lower than that predicted from an elastic spectrum. Given this shear force, the objective of this paper is to evaluate the effect of the element strength assignment (as determined by several building codes) on the torsional response of inelastic single-storey eccentric structures and to provide guidelines for minimizing this structural behaviour. It is demonstrated that the expected torque about the centre of mass (CM) may be, with equal probability, positive (counterclockwise) or negative (clockwise). This result means that the torsional strength should also be provided in equal terms in both rotational directions, and therefore the base shear and torque (BST) surface of a given system must be symmetrical (or approximately symmetrical). In stiffness-eccentric systems, appropriate BST surfaces may be obtained when a structural design is based on a pair of design eccentricities in a symmetrical order about CM, and this is shown in representative single-storey building models under characteristic ground motions.


2019 ◽  
Vol 8 (4) ◽  
pp. 3633-3637

Precast concrete structures are widely used in construction. It consists of prefabricated elements casted in industry and connected to each other to form a homogeneous structure. Connections function is to transfer moments and axial forces. Many engineers assume precast connection as pinned, but in reality, they are semi-rigid connections that transfer forces to other members. Lack of design and detailing of connection leads to improper behaviour of the structure, which then leads to the collapse of the building. Past earthquake studies show that many precast buildings performed poorly, and the main reasons were connections. This paper mainly focuses on understanding the seismic behaviour of mid-rise i.e seven-storey precast reinforced concrete buildings with various beam-column joints i.e rigid, semi-rigid, pinned and column-base supports i.e, fixed and hinged supports. Building is modelled and analyzed using ETABS v17 software. Rotational stiffness of precast billet connection is adopted for modelling of semi-rigid beam-column connections. Response spectrum and modal analysis are carried out. Results of displacements, storey drift, storey shear, storey stiffness, base shear, time periods and first mode shapes of models are discussed. It is observed, precast reinforced concrete building models with semi rigid connection performs better than building models with pinned connections and building models with fixed supports reduces the structural response to a great extent.


2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
İbrahim Hakkı Erkan ◽  
Talha Polat Doğan ◽  
Musa Hakan Arslan

Reinforced concrete walls are very efficient structural elements in terms of carrying the lateral loads that are expected to affect the structures during the service of the buildings. These elements, which are not used for economic reasons in buildings designed in areas with low seismic hazard, can actually provide a significant increase in performance with a very small increase in construction cost. In this study, a total of 9 building models have been created and the relationship between optimum reinforced concrete wall ratio and cost on these buildings has been investigated. The design and analysis of the models were carried out according to the criteria specified in TSC 2018. Three different structural systems specified in TSC 2018 were used in the designed models. These structural systems used; RC frame structures, RC wall-frame structures and RC wall structures. These structures were analyzed by Response Spectrum Method which is linear analysis method and base shear forces were obtained. Then, push-over analysis, which is a nonlinear analysis method, was applied to obtain the base shear forces that the structure can actually carry. After the analysis, the quantities of materials to be used for the construction of the structural systems of the models were calculated and current manufacturing prices and rough costs were calculated. In order to compare the obtained costs with the structural performances, nonlinear shear forces and linear shear forces ratios were calculated and the over strength factors were calculated for each model. In the light of the data obtained from the studies in the literature, when the over strength factors and cost values are examined together, it is concluded that the optimum design for the conditions specified in TSC 2018 will be provided with the RC wall ratio between 0.001 - 0.0016. It is concluded that lateral load carrying capacity of construction increases up to 650% by increasing the construction cost by 17% for the designed models.


Author(s):  
Agyanata Tua Munthe ◽  
Abdul Gafur

The earthquake that often hit Indonesia caused thousands of lives and caused damage to buildings. These earthquakes often occur because Indonesia is in two regions, namely the Pacific earthquake path (Circum Pacific Earthquake Belt) and the Asian earthquake lane (Trans Asiatic Earthquake Belt). Earthquake disasters cause damage to building structures. When an earthquake occurs, it is expected that the building can accept earthquake force at a certain level without significant damage to its structure. In general, earthquake analysis is divided into two major parts, namely static earthquake analysis and dynamic earthquake analysis. In buildings that are very high, irregular, multilevel, and buildings that require enormous accuracy are used dynamic analysis planning, which consists of a variety of spectral response analysis and dynamic time response dynamic analysis. This study aims to determine the building's security in terms of displacement, drift, and base shear. The method used is a dynamic analysis of the response spectrum using the ETABS program. The maximum total drift in the X direction is 0.0200475 m and in the Y direction is 0.020405 m, so the building is safe against ultimate boundary performance (0.02h) and service boundary performance {(0.03 / R) x h}. So that the displacement in the building does not exceed the maximum displacement, the building is safe from earthquake plans.


Author(s):  
Deeshma D

Construction of RC buildings in preferred locations in the north & eastern hilly regions have increased during the last few decades due to urbanization, population increase, and high influx of tourists. The buildings situated in hilly areas are much more prone to seismic environment in comparison to the buildings that are located in flat regions. Structures on slopes differ from other buildings since they are irregular both vertically and horizontally and therefore susceptible to severe damage when subjected to seismic action. The columns of ground storey have varying height due to sloping ground. This paper presents the comparative analysis of various configurations of 15 storied building with to be found on varying slope with different plan and different structural arrangements situated on seismic zone IV. This study compares various reinforced concrete models framed and analysed their response against dynamic loading to identify and struggle the worst possible scenario. The study is carried out for a combination of three different slopes and different building configuration by response spectrum analysis method and various parameters are compared against various constraints.


2019 ◽  
Vol 1 (2) ◽  
pp. 63-78
Author(s):  
Muhammad Irwansyah ◽  
Johannes Tarigan ◽  
Zulfazly Putra

The development of earthquake analysis towards structures is required to prevent damages and loss in buildings due to earthquakes. The base isolation system is a simple design approach for earthquake-resistant buildings to protect the structures and components from the risk of earthquake damages by using the concept of reducing earthquake forces. This research aims to analyze the performance of a general hospital building in Labura Regency area in order to know the safety of the building in terms of period, frequency, base shear force, displacement and earthquake force, used the base isolators and without the base isolators. The method used is response-spectrum dynamic analysis by ETABS v2016 program. From the calculation of structural analysis, the application of base isolation is able to build up the period of the structure, therefore, the maximum acceleration of earthquakes can be reduced at certain period. There is an average increase by 48.21% of the structural period compared to non-isolated base structure, and the frequency that occurs in structures using base isolators is smaller than without base isolators. The friction force obtained is smaller compared to the structures without dampers. Base-isolated building structures observed have bigger displacement than non-base isolated structures. The average rise of the building displacement is 27.14% at x and 2.74% at y directions. In base-isolated structures, earthquake forces are reduced averagely by 57.51% at x and 82.73% at y directions. The analysis of structural performance, General Hospital in Labura Regency is categorized to Immediate Occupancy (IO) in which the building structures are safe with no significant risk of fatalities due to structural failures, there are no any significant damages and the building can be used and functioned/operated again immediately.


Author(s):  
B. L. Ly ◽  
L. Sun

The following five common topics in the modal Floor Response Spectrum (FRS) method are examined: 1) The relationship between the effective mass and the total mass; 2) Estimation of the base shear; 3) Identification of a local mode; 4) The uniform acceleration to be applied in the equivalent static analysis method; 5) Correction for the residual rigid modes. This paper shows the usage of effective mass in determining the base shear. A quantitative method based on the ranking of the importance of a mode and the importance of a mass in a mode is given, in addition to graphic animations, to exclude a local mode. It also provides a more realistic static method with a less overly conservative acceleration.


2011 ◽  
Vol 22 (16) ◽  
pp. 1913-1927 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Kyung-Jo Youn ◽  
Kyung-Won Min

In this study, a decentralized algorithm for operating a semiactive MR damper was presented. The frictional force of the MR damper was determined based on the assumed shape functions using the displacement and velocity of the damper piston itself. The seismic response control performance of the MR damper was numerically and experimentally evaluated and compared to that of the passively or semiactively operated MR damper. The results from numerical analysis of SDOF system indicated that passively operated MR damper to have an optimal frictional force less than about 30% of the base shear force provided the smallest displacement response spectrum over all the periods. The proposed MR damper showed the better performance in reducing the absolute acceleration with the larger frictional force than the passive one. Also, the results from a three-storey benchmark building indicated that the proposed decentralized MR damper provided control performance equivalent to or better than the performance shown by the semiactive MR damper using a centralized LQR algorithm. Finally, the effectiveness of the proposed MR damper was verified through experimental tests of a full-scale five-storey steel structure with the MR dampers.


2020 ◽  
Vol 2 (2) ◽  
pp. 48-57
Author(s):  
Agyanata Tua Munthe ◽  
Abdul Gafur

The earthquake that often hit Indonesia caused thousands of lives and caused damage to buildings. These earthquakes often occur because Indonesia is in two regions, namely the Pacific earthquake path (Circum Pacific Earthquake Belt) and the Asian earthquake lane (Trans Asiatic Earthquake Belt). Earthquake disasters cause damage to building structures. When an earthquake occurs, it is expected that the building can accept earthquake force at a certain level without significant damage to its structure. In general, earthquake analysis is divided into two major parts, namely static earthquake analysis and dynamic earthquake analysis. In buildings that are very high, irregular, multilevel, and buildings that require enormous accuracy are used dynamic analysis planning, which consists of a variety of spectral response analysis and dynamic time response dynamic analysis. This study aims to determine the building's security in terms of displacement, drift, and base shear. The method used is a dynamic analysis of the response spectrum using the ETABS program. The maximum total drift in the X direction is 0.0200475 m and in the Y direction is 0.020405 m, so the building is safe against ultimate boundary performance (0.02h) and service boundary performance {(0.03 / R) x h}. So that the displacement in the building does not exceed the maximum displacement, the building is safe from earthquake plans.


Author(s):  
Ankur Verma

Abstract: Today, larger part of designs around us are built up concrete cement (RCC) outlined constructions. To forestall harm because of quake there is a need to foster powerful procedure to expand the strength and flexibility of elevated structures. Shear wall are steadier and more pliable and thus can bear more even loads. In this paper, we have proposed a relative report between block facade, shear divider and uncovered casing by using ETABS programming. This review is essentially centered around seismic conduct of G+12 building. The outcomes are talked about as far as base shear, sidelong relocation, story float, story solidness and normal period for every one of the three models. We find that shear wall has least parallel uprooting and least time span when contrasted and block facade and uncovered edge. Likewise, we track down that the shear divider model is more adaptable because of lesser float when contrasted and different models. The upsides of removal and float for shear wall is likewise not as much as block facade since the tallness of the structure increments. Keywords: shear wall, bare frame, Response spectrum, Earthquake, ETABS


Sign in / Sign up

Export Citation Format

Share Document