bkt transition
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Author(s):  
S. Y. Wang ◽  
Yijun Yu ◽  
Jinxiang Hao ◽  
Yang Feng ◽  
Jinjiang Zhu ◽  
...  

Abstract Monolayers of a prototypical cuprate high transition-temperature (TC) superconductor Bi2Sr2CaCu2O8+δ (Bi2212) was recently found to show TC and other electronic properties similar to those of the bulk. The robustness of superconductivity in an ideal two-dimensional (2D) system was an intriguing fact that defied the Mermin-Wagner theorem. Here, we took advantage of the high sensitivity of scanning SQUID susceptometry to image the phase stiffness throughout the phase transition of Bi2212 in the 2D limit. We found susceptibility oscillated with flux between diamagnetism and paramagnetism in a Fraunhofer-like pattern up till TC. The temperature and sample size-dependence of the modulation period agreed well with our Coulomb gas analogy of a finite 2D system based on Berezinskii–Kosterlitz–Thouless (BKT) transition. In the multilayers, the susceptibility oscillation differed in a small temperature regime below TC in consistent with a dimensional-crossover led by interlayer coupling. Serving as strong evidence of BKT transition in the bulk, there appeared a sharp superfluid density jump at zero-field and paramagnetism at small fields just below TC. These results unified the phase transitions from the monolayer Bi2212 to the bulk as BKT transition with finite interlayer coupling. This elucidating picture favored the pre-formed pairs scenario for the underdoped cuprates regardless of lattice dimensionality.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6294
Author(s):  
Wen-He Jiao ◽  
Xiao-Feng Xu ◽  
Hao Jiang ◽  
Zhu-An Xu ◽  
Qing-Hu Chen ◽  
...  

In this study, we measure the in-plane transport properties of high-quality Ba(Fe0.914Co0.086)2As2 single crystals. Signatures of vortex unbinding Berezinskii–Kosterlitz–Thouless (BKT) transition are shown from both the conventional approach and the Fisher–Fisher–Huse dynamic scaling analysis, in which a characteristic Nelson–Kosterlitz jump is demonstrated. We also observe a non-Hall transverse signal exactly at the superconducting transition, which is explained in terms of guided motion of unbound vortices.


2021 ◽  
Author(s):  
C. H. Wong ◽  
Raymond P. H. Wu ◽  
X. Lei ◽  
A. F. Zatsepin

Abstract The GoogLeNet model can completely split the overlapped phase transitions in the superconducting nanowire arrays under Josephson interaction. In the presence of the phase fluctuations in superconducting nanowires array, the electrical resistance of the superconducting nanowires is always non-zero unless the system undergoes Berezinskii-Kosterlitz-Thouless (BKT) transition where the superconducting vortices and anti-vortices form pairs. The two-dimensional XY model can mimic the superconducting transition temperature Tc and the BKT transition temperature TBKT by observing the heat capacity anomalies upon cooling. If the Josephson coupling across the nanowires is strong, the heat capacity anomalies almost overlap with each other so that the traditional curve-fitting techniques are difficult to completely distinguish between the Tc and the TBKT. To solve this issue, we apply an artificial-intelligence technique to completely split the overlapped heat capacity anomalies. After the GoogLeNet-assisted phase transition detector is built, the GoogLeNet model can learn from the features of the phase transitions and then interpret the Tc and TBKT in the ‘unseen’ system precisely. Our work opens a path for the GoogLeNet model to enter the world of superconductivity.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Se Kwon Kim ◽  
Suk Bum Chung

Motivated by recent experimental progress in 2D magnetism, we theoretically study spin transport in 2D easy-plane magnets at finite temperatures across the Berezinskii-Kosterlitz-Thouless (BKT) phase transition, by developing a duality mapping to the 2+1D electromagnetism with the full account of spin’s finite lifetime. In particular, we find that the non-conservation of spin gives rise to a distinct signature across the BKT transition, with the spin current decaying with distance power-law (exponentially) below (above) the transition; this is detectable in the proposed experiment with NiPS_33 and CrCl_33.


2020 ◽  
Vol 102 (18) ◽  
Author(s):  
Zhiqiang Wang ◽  
Gaurav Chaudhary ◽  
Qijin Chen ◽  
K. Levin

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Ankit Kumar ◽  
Guan-Ming Su ◽  
Chau-Shing Chang ◽  
Ching-Chen Yeh ◽  
Bi-Yi Wu ◽  
...  

We have performed detailed transport measurements on a 3 nm thick (as-grown) Al film on GaAs prepared by molecular beam epitaxy (MBE). Such an epitaxial film grown on a GaAs substrate shows the Berezinskii-Kosterlitz-Thouless (BKT) transition, a topological transition in two dimensions. Our experimental data shows that the MBE-grown Al nanofilm is an ideal system for probing interesting physical phenomena such as the BKT transition and superconductivity. The increased superconductor transition temperature (~2.4 K) compared to that of bulk Al (1.2 K), together with the ultrathin film quality, may be advantageous for future superconductor-based quantum devices and quantum information technology.


2019 ◽  
Vol 33 (30) ◽  
pp. 1950361
Author(s):  
T. P. Figueiredo ◽  
B. V. Costa

In this paper, we use the Replica-Exchange Wang–Landau (REWL) technique to study the behavior of the two-point correlation function of the site diluted classical anisotropic Heisenberg (AH) model in two dimensions. The model has a topological Berezinskii–Kosterlitz–Thouless (BKT) transition for any dilution down to the percolation threshold, [Formula: see text]. Contrary to earlier results that predict the exponent of the correlation function, [Formula: see text], to decay linearly to zero as a function of temperature, we found that it decreases with temperature to a finite value [Formula: see text] at [Formula: see text] for any dilution [Formula: see text].


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 933 ◽  
Author(s):  
Oscar Negrete ◽  
Patricio Vargas ◽  
Francisco Peña ◽  
Gonzalo Saravia ◽  
Eugenio Vogel

In this paper, we revisit the q-state clock model for small systems. We present results for the thermodynamics of the q-state clock model for values from q = 2 to q = 20 for small square lattices of L × L , with L ranging from L = 3 to L = 64 with free-boundary conditions. Energy, specific heat, entropy, and magnetization were measured. We found that the Berezinskii–Kosterlitz–Thouless (BKT)-like transition appears for q > 5, regardless of lattice size, while this transition at q = 5 is lost for L < 10; for q ≤ 4, the BKT transition is never present. We present the phase diagram in terms of q that shows the transition from the ferromagnetic (FM) to the paramagnetic (PM) phases at the critical temperature T 1 for small systems, and the transition changes such that it is from the FM to the BKT phase for larger systems, while a second phase transition between the BKT and the PM phases occurs at T 2. We also show that the magnetic phases are well characterized by the two-dimensional (2D) distribution of the magnetization values. We made use of this opportunity to carry out an information theory analysis of the time series obtained from Monte Carlo simulations. In particular, we calculated the phenomenological mutability and diversity functions. Diversity characterizes the phase transitions, but the phases are less detectable as q increases. Free boundary conditions were used to better mimic the reality of small systems (far from any thermodynamic limit). The role of size is discussed.


Sign in / Sign up

Export Citation Format

Share Document