scholarly journals H+-Conducting Aromatic Multiblock Copolymer and Blend Membranes and Their Application in PEM Electrolysis

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3467
Author(s):  
Johannes Bender ◽  
Britta Mayerhöfer ◽  
Patrick Trinke ◽  
Boris Bensmann ◽  
Richard Hanke-Rauschenbach ◽  
...  

As an alternative to common perfluorosulfonic acid-based polyelectrolytes, we present the synthesis and characterization of proton exchange membranes based on two different concepts: (i) Covalently bound multiblock-co-ionomers with a nanophase-separated structure exhibit tunable properties depending on hydrophilic and hydrophobic components’ ratios. Here, the blocks were synthesized individually via step-growth polycondensation from either partially fluorinated or sulfonated aromatic monomers. (ii) Ionically crosslinked blend membranes of partially fluorinated polybenzimidazole and pyridine side-chain-modified polysulfones combine the hydrophilic component’s high proton conductivities with high mechanical stability established by the hydrophobic components. In addition to the polymer synthesis, membrane preparation, and thorough characterization of the obtained materials, hydrogen permeability is determined using linear sweep voltammetry. Furthermore, initial in situ tests in a PEM electrolysis cell show promising cell performance, which can be increased by optimizing electrodes with regard to binders for the respective membrane material.

Author(s):  
Jephanya Kasukurthi ◽  
K. M. Veepuri ◽  
Jianhu Nie ◽  
Yitung Chen

In this present work, finite volume method was used to simulate the three-dimensional water flow and heat transfer in a flow field plate of the proton exchange membrane (PEM) electrolysis cell. The standard k-ε model together with standard wall function method was used to model three-dimensional fluid flow and heat transfer. First, numerical simulations were performed for a basic bipolar plate and it was found that the flow distribution inside the channels in not uniform. The design of the basic bipolar plate has been changed to a new model, which is featured with multiple inlets and multiple outlets. Numerical results show that the flow and temperature distributions for the new design become much homogeneous.


RSC Advances ◽  
2020 ◽  
Vol 10 (42) ◽  
pp. 24772-24783 ◽  
Author(s):  
Shouping Wang ◽  
Fugang He ◽  
Qiang Weng ◽  
Diao Yuan ◽  
Pei Chen ◽  
...  

A series of novel crosslinkable and crosslinked side-chain SPAES has been prepared. The S-SPAES(1/2) has high proton conductivity and acceptable single-cell performance.


2014 ◽  
Vol 577 ◽  
pp. 53-57
Author(s):  
Hang Wei ◽  
Guang Li

Sulfonated poly (arylene ether sulfone) s (SPAESs) exhibit good proton conductivity, thermal and mechanical properties, could act as candidates of proton exchange membranes for fuel cells. At the same time, the poor oxidative stability and excessive swelling ratio of SPAESs bring limitations for its further use. In this article, PAN was employed to mix with SPAES, and then SPAES/PAN blend membranes were prepared from the blend solution by casting. The water uptake, dimensional and oxidative stability, proton conductivity were measured with respect to the addition content of PAN, the phase morphology of the resultant SPAES/PAN were also observed by SEM. The results explained that the corporation of PAN into SPAES could reduce the water uptake and improve the oxidative stability of the obtained membranes compared with the pristine SPAES membrane. That the PAN phase distributed as separated domains in SPAES matrix was found, the interaction between SPAES and PAN may be present, which is responsible for the improvement of dimensional and oxidative stability. Although the proton conductivity of the blend membranes became reduced with increase of PAN content in the SPAES/PAN blend, the conductivity of 0.0265S/cm at 30°C could still be reached, satisfying the requirement for proton exchange membrane Fuel Cell


2014 ◽  
Vol 989-994 ◽  
pp. 142-145
Author(s):  
Tong Xue ◽  
Zhao Xia Hu ◽  
Shou Wen Chen

A series of multiblock copolymers based on sulfonated poly (arylene ether sulfone) (bSPAES-SF) with highly rigid hydrophilic sulfonate blocks and flexible hydrophobic blocks were successfully synthesized by the condensation of sulfonated decafluorobiphenyl-terminated oligomers and the hydroxyl-terminated oligomers. The former oligomers were sulfonated by fuming sulfonic acid. The bSPAES-SF membranes with IEC of 1.26-1.70 mmol/g exhibited high proton conductivity, hydrolytic and dimensional stability.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 959
Author(s):  
Cataldo Simari ◽  
Mario Prejanò ◽  
Ernestino Lufrano ◽  
Emilia Sicilia ◽  
Isabella Nicotera

Sulfonated Polysulfone (sPSU) is emerging as a concrete alternative to Nafion ionomer for the development of proton exchange electrolytic membranes for low cost, environmentally friendly and high-performance PEM fuel cells. This ionomer has recently gained great consideration since it can effectively combine large availability on the market, excellent film-forming ability and remarkable thermo-mechanical resistance with interesting proton conductive properties. Despite the great potential, however, the morphological architecture of hydrated sPSU is still unknown. In this study, computational and experimental advanced tools are combined to preliminary describe the relationship between the microstructure of highly sulfonated sPSU (DS = 80%) and its physico-chemical, mechanical and electrochemical features. Computer simulations allowed for describing the architecture and to estimate the structural parameters of the sPSU membrane. Molecular dynamics revealed an interconnected lamellar-like structure for hydrated sPSU, with ionic clusters of about 14–18 Å in diameter corresponding to the hydrophilic sulfonic-acid-containing phase. Water dynamics were investigated by 1H Pulsed Field Gradient (PFG) NMR spectroscopy in a wide temperature range (20–120 °C) and the self-diffusion coefficients data were analyzed by a “two-sites” model. It allows to estimate the hydration number in excellent agreement with the theoretical simulation (e.g., about 8 mol H2O/mol SO3− @ 80 °C). The PEM performance was assessed in terms of dimensional, thermo-mechanical and electrochemical properties by swelling tests, DMA and EIS, respectively. The peculiar microstructure of sPSU provides a wider thermo-mechanical stability in comparison to Nafion, but lower dimensional and conductive features. Nonetheless, the single H2/O2 fuel cell assembled with sPSU exhibited better features than any earlier published hydrocarbon ionomers, thus opening interesting perspectives toward the design and preparation of high-performing sPSU-based PEMs.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Carlos Corona-García ◽  
Alejandro Onchi ◽  
Arlette A. Santiago ◽  
Araceli Martínez ◽  
Daniella Esperanza Pacheco-Catalán ◽  
...  

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4′-diamino-2,2′-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm−1 at 30 °C after activation of the polymer membrane.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 282
Author(s):  
Leandri Vermaak ◽  
Hein W. J. P. Neomagus ◽  
Dmitri G. Bessarabov

This paper reports on an experimental evaluation of the hydrogen separation performance in a proton exchange membrane system with Pt-Co/C as the anode electrocatalyst. The recovery of hydrogen from H2/CO2, H2/CH4, and H2/NH3 gas mixtures were determined in the temperature range of 100–160 °C. The effects of both the impurity concentration and cell temperature on the separation performance of the cell and membrane were further examined. The electrochemical properties and performance of the cell were determined by means of polarization curves, limiting current density, open-circuit voltage, hydrogen permeability, hydrogen selectivity, hydrogen purity, and cell efficiencies (current, voltage, and power efficiencies) as performance parameters. High purity hydrogen (>99.9%) was obtained from a low purity feed (20% H2) after hydrogen was separated from H2/CH4 mixtures. Hydrogen purities of 98–99.5% and 96–99.5% were achieved for 10% and 50% CO2 in the feed, respectively. Moreover, the use of proton exchange membranes for electrochemical hydrogen separation was unsuccessful in separating hydrogen-rich streams containing NH3; the membrane underwent irreversible damage.


Sign in / Sign up

Export Citation Format

Share Document