scholarly journals Disc damage likelihood scale recognition for Glaucoma detection

2021 ◽  
Vol 2114 (1) ◽  
pp. 012005
Author(s):  
F. G. Mohammed ◽  
S.D. Athab ◽  
S. G. Mohammed

Abstract Glaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma disease with 70% percentage; moreover, when the dimensions of both Optic Disc(OD) and Optic Cup(OC) were used as additional features the accuracy rate raised to 91%.

2019 ◽  
Vol 63 (3) ◽  
pp. 425-434 ◽  
Author(s):  
Negin Manshouri ◽  
Temel Kayikcioglu

Abstract Despite the development of two- and three-dimensional (2D&3D) technology, it has attracted the attention of researchers in recent years. This research is done to reveal the detailed effects of 2D in comparison with 3D technology on the human brain waves. The impact of 2D&3D video watching using electroencephalography (EEG) brain signals is studied. A group of eight healthy volunteers with the average age of 31 ± 3.06 years old participated in this three-stage test. EEG signal recording consisted of three stages: After a bit of relaxation (a), a 2D video was displayed (b), the recording of the signal continued for a short period of time as rest (c), and finally the trial ended. Exactly the same steps were repeated for the 3D video. Power spectrum density (PSD) based on short time Fourier transform (STFT) was used to analyze the brain signals of 2D&3D video viewers. After testing all the EEG frequency bands, delta and theta were extracted as the features. Partial least squares regression (PLSR) and Support vector machine (SVM) classification algorithms were considered in order to classify EEG signals obtained as the result of 2D&3D video watching. Successful classification results were obtained by selecting the correct combinations of effective channels representing the brain regions.


The medical image processing is extensively used in several areas. In earlier detection and treatment of these diseases is very helpful to find out the abnormality issues in that image. Here there are number of methods available for diagnosis to detect the brain tumor of MRI image. This study deals with there are two main contributions are implemented in this filter method. (1)The extension of adaptive bilateral method to apply sub-bands of low frequency signal decomposed using wavelet transform. A wavelet threshold is combined with adaptive bilateral method to form an innovative structure in image de-noising method. It’s very efficient to eliminate noise in original noisy images. (2) First detected block boundary and texture regions discontinuities to adapt or control the parameters of spatial and intensity in bilateral filter. The adaptive method can improve the restored image quality in this test result compared with standard bilateral filter. The proposed segmentation technique uses novel strip method and the image is split into number of strips 3, 4, 5 and 6. Using a hybrid Assured Convergence PSO (ACPSO) and Fuzzy C-Mean Clustering (FCM) was proposed method. The segmentation algorithm presented in this research gives 95% of accuracy rate to detect brain tumor when strip count is 5. In this research work presented a feature vector using a different statistical texture analysis of brain tumor from MRI image. The statistical feature texture is computed using GLCM (Gray Level Co-occurrence Matrices) of Brain Nodule structure. For this research work, the brain nodule segmented using strips method to implemented marker watershed image segmentation based on PSO (Particle Swarm Optimization) and Fuzzy C-means clustering (FCM). Furthermore, the four angles 0o, 45o, 90o and 135o are calculated the segmented brain image in GLCM. The four angular directions are calculated using texture features are correlation, energy, contrast and homogeneity. The accuracy rate of previous method was compared and proved the proposed method an Assured Convergence Particle Swarm Optimization (ACPSO)-Fuzzy C-Mean (FCM) and using SVM classification technique is suitable for the early detection of brain tumor. In proposed, a tumor extraction is improved in ASPSO-FCM and SVM classification with better accuracy rate of 95.31%.


2021 ◽  
Vol 336 ◽  
pp. 05014
Author(s):  
Zhiming Chen ◽  
Yanshan Tan ◽  
Zhuo Zhang ◽  
Ming Li

The visual information that can't be detected by consciousness but can affect individual's behavior and attitude under specific conditions is called subliminal visual messages. In order to better apply subliminal visual messages to commercial advertising, education and other fields, this paper studied the process of subliminal visual messages in the brain. First, this paper designed a experiment to allow the subjects to see a series of pictures stimulation of different durations and collect the EEG signals, then analyzed the impact of stimulation time on classification accuracy. The experimental results showed that when the stimulus time is short, the classification accuracy increases with the increase of time, resulting in subliminal visual effects. However, with the increase of stimulus time, the classification accuracy began to decline. We speculated that the visual information changed from subthreshold to suprathreshold. The subliminal visual effects were disturbed until disappeared.


Author(s):  
Jair Leopoldo Raso

Abstract Introduction The precise identification of anatomical structures and lesions in the brain is the main objective of neuronavigation systems. Brain shift, displacement of the brain after opening the cisterns and draining cerebrospinal fluid, is one of the limitations of such systems. Objective To describe a simple method to avoid brain shift in craniotomies for subcortical lesions. Method We used the surgical technique hereby described in five patients with subcortical neoplasms. We performed the neuronavigation-guided craniotomies with the conventional technique. After opening the dura and exposing the cortical surface, we placed two or three arachnoid anchoring sutures to the dura mater, close to the edges of the exposed cortical surface. We placed these anchoring sutures under microscopy, using a 6–0 mononylon wire. With this technique, the cortex surface was kept close to the dura mater, minimizing its displacement during the approach to the subcortical lesion. In these five cases we operated, the cortical surface remained close to the dura, anchored by the arachnoid sutures. All the lesions were located with a good correlation between the handpiece tip inserted in the desired brain area and the display on the navigation system. Conclusion Arachnoid anchoring sutures to the dura mater on the edges of the cortex area exposed by craniotomy constitute a simple method to minimize brain displacement (brain-shift) in craniotomies for subcortical injuries, optimizing the use of the neuronavigation system.


2021 ◽  
Vol 11 (7) ◽  
pp. 2987
Author(s):  
Takumi Okumura ◽  
Yuichi Kurita

Image therapy, which creates illusions with a mirror and a head mount display, assists movement relearning in stroke patients. Mirror therapy presents the movement of the unaffected limb in a mirror, creating the illusion of movement of the affected limb. As the visual information of images cannot create a fully immersive experience, we propose a cross-modal strategy that supplements the image with sensual information. By interacting with the stimuli received from multiple sensory organs, the brain complements missing senses, and the patient experiences a different sense of motion. Our system generates the sense of stair-climbing in a subject walking on a level floor. The force sensation is presented by a pneumatic gel muscle (PGM). Based on motion analysis in a human lower-limb model and the characteristics of the force exerted by the PGM, we set the appropriate air pressure of the PGM. The effectiveness of the proposed system was evaluated by surface electromyography and a questionnaire. The experimental results showed that by synchronizing the force sensation with visual information, we could match the motor and perceived sensations at the muscle-activity level, enhancing the sense of stair-climbing. The experimental results showed that the visual condition significantly improved the illusion intensity during stair-climbing.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-740
Author(s):  
Gerard Karsenty

Abstract We hypothesized that bone may secrete hormones that regulate energy metabolism and reproduction. Testing this hypothesis revealed that the osteoblast-specific secreted protein osteocalcin is a hormone regulating glucose homeostasis and male fertility by signaling through a GPCR, Gprc6a, expressed in pancreatic β bells and Leydig cells of the testes. The systematic exploration of osteocalcin biology, revealed that it regulates an unexpectedly large spectrum of physiological functions in the brain and peripheral organs and that it has most features of an antigeromic molecule. As will be presented at the meeting, this body of work suggests that harnessing osteocalcin for therapeutic purposes may be beneficial in the treatment of age-related diseases such as depression, age-related memory loss and the decline in muscle function seen in sarcopenia.


2021 ◽  
Vol 11 (8) ◽  
pp. 3397
Author(s):  
Gustavo Assunção ◽  
Nuno Gonçalves ◽  
Paulo Menezes

Human beings have developed fantastic abilities to integrate information from various sensory sources exploring their inherent complementarity. Perceptual capabilities are therefore heightened, enabling, for instance, the well-known "cocktail party" and McGurk effects, i.e., speech disambiguation from a panoply of sound signals. This fusion ability is also key in refining the perception of sound source location, as in distinguishing whose voice is being heard in a group conversation. Furthermore, neuroscience has successfully identified the superior colliculus region in the brain as the one responsible for this modality fusion, with a handful of biological models having been proposed to approach its underlying neurophysiological process. Deriving inspiration from one of these models, this paper presents a methodology for effectively fusing correlated auditory and visual information for active speaker detection. Such an ability can have a wide range of applications, from teleconferencing systems to social robotics. The detection approach initially routes auditory and visual information through two specialized neural network structures. The resulting embeddings are fused via a novel layer based on the superior colliculus, whose topological structure emulates spatial neuron cross-mapping of unimodal perceptual fields. The validation process employed two publicly available datasets, with achieved results confirming and greatly surpassing initial expectations.


Sign in / Sign up

Export Citation Format

Share Document