scholarly journals Simulation of the process of isothermal backward extrusion of a thick-walled hollow billet

2021 ◽  
Vol 1753 (1) ◽  
pp. 012024
Author(s):  
A A Pasynkov ◽  
S N Larin
Author(s):  
S. R. Rakhmanov ◽  
V. V. Povorotnii

To form a necessary geometry of a hollow billet to be rolled at a pipe rolling line, stable dynamics of the base equipment of the automatic mill working stand has a practical meaning. Among the forces, acting on its parts and elements, significant by value short-time dynamic loads are the least studied phenomena. These dynamic loads arise during transient interaction of the hollow billet, rollers, mandrel and other mill parts at the forced grip of the hollow billet. Basing of the calculation scheme and dynamic model of the mechanical system of the ТПА 350 automatic mill working stand was accomplished. A mathematical model of dynamics of the system “hollow billet (pipe) – working stand” within accepted calculation scheme and dynamic model of the mechanical system elaborated. Influence of technological load of the rolled hollow billet variation in time was accounted, as well as variation of the mechanical system mass, and rigidity of the ТПА 350 automatic mill working stand. Differential equations of oscillation movement for four-mass model of forked sub-systems of the automatic mill working stand were made up, results of their digital calculation quoted. Dynamic displacement of the stand elements in the inter-roller gap obtained, which enabled to estimate the results of amplitude and frequency characteristics of the branches of the mill rollers setting. It was defined by calculation, that the maximum amplitude of the forced oscillations of elements of the ТПА 350 automatic mill working stand within the inter-roller gap does not exceed 2 mm. It is much higher than the accepted value of adjusting parameters of the deformation center of the ТПА 350 automatic mill. A scheme of comprehensive modernization of the rollers setting in the ТПА 350 automatic mill working stand was proposed. It was shown, that increase of rigidity of rollers setting in the ТПА 350 automatic mill working stand enables to stabilize the amplitude of forced oscillations of the working stand elements within the inter-rollers gap and considerably decrease the induced nonuniform hollow billet wall thickness and increase quality of the rolled pipes at ТПА 350.


Author(s):  
A.A. Pasynkov ◽  
S.N. Larin ◽  
G.A. Nuzhdin

Тhe results for estimation of the square die extrusion forces of cylindrical billets are presented. The study is performed on the basis of the fi nite element method. The results obtained during the simulation are analyzed statistically. Regression dependences for forces are obtained, with the help of which reverse extrusion studies are performed.


1992 ◽  
Vol 33 (1-2) ◽  
pp. 109-123 ◽  
Author(s):  
G. Shen ◽  
A. Vedhanayagam ◽  
E. Kropp ◽  
T. Altan
Keyword(s):  

Author(s):  
Radionov Andrew Alexandrovich ◽  
Karandaev Alexander Sergeevich ◽  
Khramshin Vadim Rifhatovich ◽  
Igor Yuryevich Andryushin ◽  
Gostev Anatoliy Nikolaevich

2008 ◽  
Vol 367 ◽  
pp. 193-200
Author(s):  
Branko Grizelj ◽  
M. Plancak ◽  
Branimir Barisic

The paper analyses the process of simulation forward-backward extrusion. In metal forming industries, many products have to be formed in large numbers and with highly accurate dimensions. To save energy and material it is necessary to understand the behavior of material and to know the intermediate shapes of the formed parts and the mutual effects between tool and formed party during the forming process. These are normally based on numerical methods which take into account all physical conditions of the deformed material during the process. For this purpose, the finite element method has been developed in the past in different ways. The paper highlights the finite element simulation as a very useful technique in studying, where there is a generally close correlation in the load results obtained with finite elements method and those obtained experimentally.


Author(s):  
B.S. Moroz ◽  
M.G. Dudnik

The parameters of deformation degree at theoretical and experimental researches of cold backward extrusion processes of hollow glasses-type products are considered. The dependences of their relationship with the relative degree of deformation and the scale of their conformity are suggested. The published results of experimental and theoretical studies on the impact of technological parameters of the backward extrusion process of hollow products in the conditions of active friction forces to reduce the deformation force and stress-strain state of the billet are analyzed. Insuffi ciently studied features of the process and the possibility for expanding of the application fi eld of the backward extrusion method with the active action of friction forces are noted. The method for calculating of the deformation rate required to determine the current stress in the implementation of the hot backward extrusion process.


Sign in / Sign up

Export Citation Format

Share Document