magnetization orientation
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
pp. 2100287
Author(s):  
Weichao Yan ◽  
Zhongquan Nie ◽  
Xunwen Zeng ◽  
Guohong Dai ◽  
Mengqiang Cai ◽  
...  


Author(s):  
Jiatian Guo ◽  
Zhutong Lu ◽  
Keyu Wang ◽  
Xiuwen Zhao ◽  
Gui-Chao Hu ◽  
...  

Abstract Inspired by the new progress in the research field of two-dimensional valleytronics materials, we propose a new class of transition metal halides, i.e., H-ZrX2 (X=Cl, Br, I), and investigated their valleytronics properties under the first-principles calculations. It harbors the spin-valley coupling at K and K' points in the top of valence band, in which the valley spin splitting of ZrI2 can reach up to 115 meV. By carrying out the strain engineering, the valley spin splitting and Berry curvature can be effectively tuned. The long-sought valley polarization reaches up to 108 meV by doping Cr atom, which corresponds to the large Zeeman magnetic field of 778T. Furthermore, the valley polarization in ZrX2 can be lineally adjusted or flipped by manipulating the magnetization orientation of the doped magnetic atoms. All the results demonstrate the well-founded application prospects of single-layer ZrX2, which can be considered as great candidate for the development of valleytronics and spintronics.



2021 ◽  
Vol 9 ◽  
Author(s):  
Zhikun Xie ◽  
Jielin Zhou ◽  
Yuanhai Cai ◽  
Jipei Chen ◽  
Wei Zhang ◽  
...  

Laser-induced magnetization dynamics in a perpendicularly exchange-coupled TbFeCo/GdFeCo bilayer film are studied by using pump-probe magneto-optical Kerr spectroscopy. An ultrafast modulation effect on local magnetization orientation is observed. Such ultrafast magnetization reorientation in the GdFeCo layer is revealed to be triggered by the femtosecond laser pulse and driven by the effective exchange field. These processes occur within a timescale of hundreds of picoseconds, in which the field- and fluence-dependent dynamical behaviors are demonstrated. In addition, an atomistic Heisenberg model is proposed for studying the laser-induced magnetization dynamics by using micromagnetic simulation. The simulated results agree with the experimental phenomena and further reveal the underlying mechanism. These results show an approach for ultrafast manipulation of the local magnetization orientation in perpendicularly exchange-coupled structures.



2021 ◽  
Vol 193 ◽  
pp. 132-136
Author(s):  
Jiahao Liu ◽  
Xiaokuo Yang ◽  
Dunhua Hong ◽  
Cheng Li ◽  
Nuo Xu ◽  
...  


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2407
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Lorena González-Legarreta ◽  
Ahmed Talaat ◽  
Juan Maria Blanco ◽  
...  

The influence of magnetic anisotropy, post-processing conditions, and defects on the domain wall (DW) dynamics of amorphous and nanocrystalline Fe-, Ni-, and Co-rich microwires with spontaneous and annealing-induced magnetic bistability has been thoroughly analyzed, with an emphasis placed on the influence of magnetoelastic, induced and magnetocrystalline anisotropies. Minimizing magnetoelastic anisotropy, either by the selection of a chemical composition with a low magnetostriction coefficient or by heat treatment, is an appropriate route for DW dynamics optimization in magnetic microwires. Stress-annealing allows further improvement of DW velocity and hence is a promising method for optimization of DW dynamics in magnetic microwires. The origin of current-driven DW propagation in annealing-induced magnetic bistability is attributed to magnetostatic interaction of outer domain shell with transverse magnetization orientation and inner axially magnetized core. The beneficial influence of the stress-annealing on DW dynamics has been explained considering that it allows increasing of the volume of outer domain shell with transverse magnetization orientation at the expense of decreasing the radius of inner axially magnetized core. Such transverse magnetic anisotropy can similarly affect the DW dynamics as the applied transverse magnetic field and hence is beneficial for DW dynamics optimization. Stress-annealing allows designing the magnetic anisotropy distribution more favorable for the DW dynamics improvement. Results on DW dynamics in various families of nanocrystalline microwires are provided. The role of saturation magnetization on DW mobility improvement is discussed. The DW shape, its correlation with the magnetic anisotropy constant and the microwire diameter, as well as manipulation of the DW shape by induced magnetic anisotropy are discussed. The engineering of DW propagation through local stress-annealing and DW collision is demonstrated.



2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Lingling Tao ◽  
Evgeny Y. Tsymbal

Abstract The Rashba effect has recently attracted great attention owing to emerging physical properties associated with it. The interplay between the Rashba effect and the Zeeman effect, being produced by the exchange field, is expected to broaden the range of these properties and even result in novel phenomena. Here we predict an insulator-to-conductor transition driven by the Rashba–Zeeman effect. We first illustrate this effect using a general Hamiltonian model and show that the insulator-to-conductor transition can be triggered under certain Rashba and exchange-field strengths. Then, we exemplify this phenomenon by considering an Ag2Te/Cr2O3 heterostructure, where the electronic structure of the Ag2Te monolayer is affected across the interface by the proximity effect of the Cr2O3 antiferromagnetic layer with well-defined surface magnetization. Based on first-principles calculations, we predict that such a system can be driven into either insulating or conducting phase, depending on the surface magnetization orientation of the Cr2O3 layer. Our results enrich the Rashba–Zeeman physics and provide useful guidelines for the realization of the insulator-to-conductor transition, which may be interesting for experimental verification.



Author(s):  
Ali Jabbari ◽  
Frédéric Dubas

Purpose In semi-analytical modeling of spoke-type permanent-magnet (PM) machines (STPMM), the saturation effect is usually neglected (i.e. iron parts are considered to be infinitely permeable) and the PM magnetization is assumed tangential (i.e. magnetization pattern is considered to be tangential-parallel). This paper aims to present an improved two-dimensional (2D) subdomain technique for STPMM with the PM magnetization orientation in quasi-Cartesian coordinates by using hyperbolic functions considering non-homogeneous Neumann boundary conditions (BCs) in non-periodic regions and by applying the interfaces conditions (ICs) in both directions (i.e. t- and θ edges ICs). Design/methodology/approach The polar coordinate system is transformed into a quasi-Cartesian coordinate system. The rotor and stator regions are divided into primary subdomains, and a partial differential equation (PDE) is assigned to each subdomain. In the PM region, the magnetization orientation is considered in the equations. By applying BCs, the general solution of the equations is determined, and by applying the ICs, the corresponding coefficients are determined. Findings Using the proposed coordinate system, the general solution of PDEs and their coefficients can mathematically be simplified. The magnetic field and non-intrinsic unbalanced magnetic forces (UMF) calculations have been performed for three different values of iron core relative permeability (200, 800 and ∞), as well as different magnetization orientation values (135 and 80 degrees). The semi-analytical model based on the subdomain technique is compared with those obtained by the 2D finite-element analysis (FEA). Results disclose that the PM magnetization angle can affect directly the performance characteristics of the STPMM. Originality/value A new model for prediction of electromagnetic performances in the STPMM takes into account magnetization direction, and soft magnetic material relative permeability in a pseudo-Cartesian coordinate system by using subdomain technique is presented.



2020 ◽  
Vol 11 ◽  
pp. 1336-1345 ◽  
Author(s):  
Sergey Bakurskiy ◽  
Mikhail Kupriyanov ◽  
Nikolay V Klenov ◽  
Igor Soloviev ◽  
Andrey Schegolev ◽  
...  

We present both theoretical and experimental investigations of the proximity effect in a stack-like superconductor/ferromagnetic (S/F) superlattice, where ferromagnetic layers with different thicknesses and coercive fields are made of Co. Calculations based on the Usadel equations allow us to find the conditions at which switching from the parallel to the antiparallel alignment of the neighboring F-layers leads to a significant change of the superconducting order parameter in superconductive thin films. We experimentally study the transport properties of a lithographically patterned Nb/Co multilayer. We observe that the resistive transition of the multilayer structure has multiple steps, which we attribute to the transition of individual superconductive layers with the critical temperature, T c, depending on the local magnetization orientation of the neighboring F-layers. We argue that such superlattices can be used as tunable kinetic inductors designed for artificial neural networks representing the information in a “current domain”.



2020 ◽  
Author(s):  
Sergey Bakurskiy ◽  
Mikhail Kupriyanov ◽  
Nikolay V Klenov ◽  
Igor Soloviev ◽  
Andrey Schegolev ◽  
...  

We present both a theoretical and experimental investigation of the proximity effect in a stack-like superconductor/ferromagnet (S/F) superlattice, where ferromagnetic layers with different thicknesses and coercive fields are made of Co. Calculations based on Usadel equations allow us to find conditions at which switching from the parallel to the antiparallel alignment of neighboring F-layers leads to a significant change of the superconducting order parameter in thin s-films. Experimentally we study the transport properties of a lithographically patterned Nb/Co multilayer. We observe that the resistive transition of the multilayer contains multiple steps, which we attribute to the transition of individual s-layers with T c’s depending on the local magnetization orientation of neighbor F-layers. We argue that such superlattices can be used as tunable kinetic inductors, designed for artificial neural networks with a representation of information in the current domain.



2020 ◽  
Author(s):  
Jiahao Liu ◽  
Xiaokuo Yang ◽  
Dunhua Hong ◽  
Cheng Li ◽  
Nuo Xu ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document