scholarly journals Hamiltonian simulation algorithms for near-term quantum hardware

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Laura Clinton ◽  
Johannes Bausch ◽  
Toby Cubitt

AbstractThe quantum circuit model is the de-facto way of designing quantum algorithms. Yet any level of abstraction away from the underlying hardware incurs overhead. In this work, we develop quantum algorithms for Hamiltonian simulation "one level below” the circuit model, exploiting the underlying control over qubit interactions available in most quantum hardware and deriving analytic circuit identities for synthesising multi-qubit evolutions from two-qubit interactions. We then analyse the impact of these techniques under the standard error model where errors occur per gate, and an error model with a constant error rate per unit time. To quantify the benefits of this approach, we apply it to time-dynamics simulation of the 2D spin Fermi-Hubbard model. Combined with new error bounds for Trotter product formulas tailored to the non-asymptotic regime and an analysis of error propagation, we find that e.g. for a 5 × 5 Fermi-Hubbard lattice we reduce the circuit depth from 1, 243, 586 using the best previous fermion encoding and error bounds in the literature, to 3, 209 in the per-gate error model, or the circuit-depth-equivalent to 259 in the per-time error model. This brings Hamiltonian simulation, previously beyond reach of current hardware for non-trivial examples, significantly closer to being feasible in the NISQ era.

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 492
Author(s):  
Philippe Suchsland ◽  
Francesco Tacchino ◽  
Mark H. Fischer ◽  
Titus Neupert ◽  
Panagiotis Kl. Barkoutsos ◽  
...  

We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method. This technique can reduce the impact of different sources of noise at the sole cost of an increase in the number of measurements to be performed on the target quantum circuit, without additional experimental overhead. We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations within the framework of variational quantum algorithms, thus leading to improved ground-state calculations for quantum chemistry and physics problems beyond state-of-the-art results.


Author(s):  
Sergey Ulyanov ◽  
Andrey Reshetnikov ◽  
Olga Tyatyushkina ◽  
Vladimir Korenkov

All the quantum algorithms are based on a certain quantum computing model, varying from the quantum circuit, one-way quantum computation, adiabatic quantum computation and topological quantum computation. These four models are equivalent in computational power; among them, the quantum circuit model is most frequently used. In the circuit model, it has been proved that arbitrary single-qubit rotations plus twoqubit controlled-NOT gates are universal, i.e. they can provide a set of gates to implement any quantum algorithm. This article discusses the goal for this research: it is to given a lightning-fast (as-barebones-as-possible) definition of the quantum circuit model computing and leisurely development of quantum computation before actually getting around to sophisticated algorithms. In this article the main ideas of quantum software engineering is described.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5783
Author(s):  
Alvaro Castillo-García ◽  
Andreas W. Hauser ◽  
María Pilar de Lara-Castells ◽  
Pablo Villarreal

We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported by electron ionization mass spectroscopy measurements (Renzler et al., J. Chem. Phys.2016, 145, 181101), this spatially quenched reaction was characterized as a harpoon-type or long-range electron transfer in a previous high-level ab initio study (de Lara-Castells et al., J. Phys. Chem. Lett.2017, 8, 4284). To go beyond the static approach, classical and quantum PIMD simulations are performed at 2 K, slightly below the critical temperature for helium superfluidity (2.172 K). Calculations are executed in the NVT ensemble as well as the NVE ensemble to provide insights into real-time dynamics. A droplet size of 2090 atoms is assumed to study the impact of spatial hindrance on reactivity. By changing the number of beads in the PIMD simulations, the impact of quantization can be studied in greater detail and without an implicit assumption of superfluidity. We find that the reaction probability increases with higher levels of quantization. Our findings confirm earlier, static predictions of a rotational motion of the Cs2 dimer upon reacting with the fullerene, involving a substantial displacement of helium. However, it also raises the new question of whether the interacting species are driven out-of-equilibrium after impurity uptake, since reactivity is strongly quenched if a full thermal equilibration is assumed. More generally, our work points towards a novel mechanism for long-range electron transfer through an interplay between nuclear quantum delocalization within the confining medium and delocalized electronic dispersion forces acting on the two reactants.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Qin Wang ◽  
Hui Xie ◽  
Zhiming Hu ◽  
Chao Liu

In this study, molecular dynamics simulations were carried out to study the coupling effect of electric field strength and surface wettability on the condensation process of water vapor. Our results show that an electric field can rotate water molecules upward and restrict condensation. Formed clusters are stretched to become columns above the threshold strength of the field, causing the condensation rate to drop quickly. The enhancement of surface attraction force boosts the rearrangement of water molecules adjacent to the surface and exaggerates the threshold value for shape transformation. In addition, the contact area between clusters and the surface increases with increasing amounts of surface attraction force, which raises the condensation efficiency. Thus, the condensation rate of water vapor on a surface under an electric field is determined by competition between intermolecular forces from the electric field and the surface.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ka Chun Chong ◽  
Hong Fung ◽  
Carrie Ho Kwan Yam ◽  
Patsy Yuen Kwan Chau ◽  
Tsz Yu Chow ◽  
...  

Abstract Background The elderly healthcare voucher (EHCV) scheme is expected to lead to an increase in the number of elderly people selecting private primary healthcare services and reduce reliance on the public sector in Hong Kong. However, studies thus far have reported that this scheme has not received satisfactory responses. In this study, we examined changes in the ratio of visits between public and private doctors in primary care (to measure reliance on the public sector) for different strategic scenarios in the EHCV scheme. Methods Based on comments from an expert panel, a system dynamics model was formulated to simulate the impact of various enhanced strategies in the scheme: increasing voucher amounts, lowering the age eligibility, and designating vouchers for chronic conditions follow-up. Data and statistics for the model calibration were collected from various sources. Results The simulation results show that the current EHCV scheme is unable to reduce the utilization of public healthcare services, as well as the ratio of visits between public and private primary care among the local aging population. When comparing three different tested scenarios, even if the increase in the annual voucher amount could be maintained at the current pace or the age eligibility can be lowered to include those aged 60 years, the impact on shifts from public-to-private utilization were insignificant. The public-to-private ratio could only be marginally reduced from 0.74 to 0.64 in the first several years. Nevertheless, introducing a chronic disease-oriented voucher could result in a significant drop of 0.50 in the public-to-private ratio during the early implementation phase. However, the effect could not be maintained for an extended period. Conclusions Our findings will assist officials in improving the design of the EHCV scheme, within the wider context of promoting primary care among the elderly. We suggest that an additional chronic disease-oriented voucher can serve as an alternative strategy. The scheme must be redesigned to address more specific objectives or provide a separate voucher that promotes under-utilized healthcare services (e.g., preventive care), instead of services designed for unspecified reasons, which may lead to concerns regarding exploitation.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Wattana Chanthakhot ◽  
Kasin Ransikarbum

Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


Author(s):  
Giovanni Acampora ◽  
Roberto Schiattarella

AbstractQuantum computers have become reality thanks to the effort of some majors in developing innovative technologies that enable the usage of quantum effects in computation, so as to pave the way towards the design of efficient quantum algorithms to use in different applications domains, from finance and chemistry to artificial and computational intelligence. However, there are still some technological limitations that do not allow a correct design of quantum algorithms, compromising the achievement of the so-called quantum advantage. Specifically, a major limitation in the design of a quantum algorithm is related to its proper mapping to a specific quantum processor so that the underlying physical constraints are satisfied. This hard problem, known as circuit mapping, is a critical task to face in quantum world, and it needs to be efficiently addressed to allow quantum computers to work correctly and productively. In order to bridge above gap, this paper introduces a very first circuit mapping approach based on deep neural networks, which opens a completely new scenario in which the correct execution of quantum algorithms is supported by classical machine learning techniques. As shown in experimental section, the proposed approach speeds up current state-of-the-art mapping algorithms when used on 5-qubits IBM Q processors, maintaining suitable mapping accuracy.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
T. Osuna ◽  
O. E. Montano ◽  
Y. Orlov

TheL2-gain analysis is extended towards hybrid mechanical systems, operating under unilateral constraints and admitting both sliding modes and collision phenomena. Sufficient conditions for such a system to be internally asymptotically stable and to possessL2-gain less than ana priorigiven disturbance attenuation level are derived in terms of two independent inequalities which are imposed on continuous-time dynamics and on discrete disturbance factor that occurs at the collision time instants. The former inequality may be viewed as the Hamilton-Jacobi inequality for discontinuous vector fields, and it is separately specified beyond and along sliding modes, which occur in the system between collisions. Thus interpreted, the former inequality should impose the desired integral input-to-state stability (iISS) property on the Filippov dynamics between collisions whereas the latter inequality is invoked to ensure that the impact dynamics (when the state trajectory hits the unilateral constraint) are input-to-state stable (ISS). These inequalities, being coupled together, form the constructive procedure, effectiveness of which is supported by the numerical study made for an impacting double integrator, driven by a sliding mode controller. Desired disturbance attenuation level is shown to satisfactorily be achieved under external disturbances during the collision-free phase and in the presence of uncertainties in the transition phase.


Sign in / Sign up

Export Citation Format

Share Document