Preparation and properties of poly(L-lactic acid) blends with excellent low-temperature toughness by blending acrylic ester based impact resistance agent

Author(s):  
Shiling Jia ◽  
Yunjing Chen ◽  
Junjia Bian ◽  
Hongwei Pan ◽  
Xiangyu Wang ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 894
Author(s):  
Johannes Pitsch ◽  
Georg Sandner ◽  
Jakob Huemer ◽  
Maximilian Huemer ◽  
Stefan Huemer ◽  
...  

Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are associated with digestive disorders and with diseases such as irritable bowel syndrome. In this study, we determined the FODMAP contents of bread, bakery products, and flour and assessed the effectiveness of sourdough fermentation for FODMAP reduction. The fermentation products were analyzed to determine the DP 2–7 and DP >7 fructooligosaccharide (FOS) content of rye and wheat sourdoughs. FOSs were reduced by Acetobacter cerevisiae, Acetobacter okinawensis, Fructilactobacillus sanfranciscensis, and Leuconostoc citreum to levels below those in rye (−81%; −97%) and wheat (−90%; −76%) flours. The fermentation temperature influenced the sourdough acetic acid to lactic acid ratios (4:1 at 4 °C; 1:1 at 10 °C). The rye sourdough contained high levels of beneficial arabinose (28.92 g/kg) and mannitol (20.82 g/kg). Our study contributes in-depth knowledge of low-temperature sourdough fermentation in terms of effective FODMAP reduction and concurrent production of desirable fermentation byproducts.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Yunqi Wu ◽  
Qian Ge ◽  
Feng Yang ◽  
Tong Wu ◽  
Ming Xiang

Author(s):  
Priyanka Verma ◽  
Ravinder Kumar Wanchoo ◽  
Amrit Pal Toor

Sulphonate-grafted-Titania (SO3H-TiO2) quantum dot catalyzed photochemical process offered an energy-efficient, accelerated, and safe approach to synthesize lactic acid esters at ambient temperature conditions. This low-temperature route is conceived in line...


2018 ◽  
Vol 709 ◽  
pp. 1-8 ◽  
Author(s):  
C.R. Anoop ◽  
Aditya Prakash ◽  
S.V.S. Narayana Murty ◽  
Indradev Samajdar

Author(s):  
Nuria Sanchez ◽  
Özlem E. Güngör ◽  
Martin Liebeherr ◽  
Nenad Ilić

The unique combination of high strength and low temperature toughness on heavy wall thickness coils allows higher operating pressures in large diameter spiral welded pipes and could represent a 10% reduction in life cycle cost on long distance gas pipe lines. One of the current processing routes for these high thickness grades is the thermo-mechanical controlled processing (TMCP) route, which critically depends on the austenite conditioning during hot forming at specific temperature in relation to the aimed metallurgical mechanisms (recrystallization, strain accumulation, phase transformation). Detailed mechanical and microstructural characterization on selected coils and pipes corresponding to the X80M grade in 24 mm thickness reveals that effective grain size and distribution together with the through thickness gradient are key parameters to control in order to ensure the adequate toughness of the material. Studies on the softening behavior revealed that the grain coarsening in the mid-thickness is related to a decrease of strain accumulation during hot rolling. It was also observed a toughness detrimental effect with the increment of the volume fraction of M/A (martensite/retained austenite) in the middle thickness of the coils, related to the cooling practice. Finally, submerged arc weldability for spiral welded pipe manufacturing was evaluated on coil skelp in 24 mm thickness. The investigations revealed the suitability of the material for spiral welded pipe production, preserving the tensile properties and maintaining acceptable toughness values in the heat-affected zone. The present study revealed that the adequate chemical alloying selection and processing control provide enhanced low temperature toughness on pipes with excellent weldability formed from hot rolled coils X80 grade in 24 mm thickness produced at ArcelorMittal Bremen.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
SAMSUL RIZAL ◽  
Suharyono Suharyono ◽  
Fibra Nuariny ◽  
Julfi Restu Amelia

Abstract. Rizal S, Suharyono, Nurainy F, Amela JR. 2020. The effects of low-temperature storage on the viability of Lactobacillus casei and the stability of antibacterial activity in green grass jelly synbiotic drinks. Biodiversitas 21: 3826-3831. Synbiotic drinks from green grass jelly have shown antibacterial activity against pathogenic bacteria. These are usually stored at low temperatures to maintain their characteristics. The aim of this study was to determine the effect of storage at low temperature of 10°C on the viability of lactic acid bacteria (Lactobacillus casei) and the stability of the antibacterial activity in synbiotic drinks made of green grass jelly. Antibacterial activity of green grass jelly synbiotic drink was conducted against pathogenic bacteria (Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Escherichia coli). The products were stored for 28 days at 10°C temperature. Observations on the antibacterial activity, pH value, total acid, and total lactic acid bacteria were carried out every 7 days. Antibacterial activity was evaluated using agar well diffusion method. The results showed that storage at low temperature (10 ± 2°C) for 28 days decreased the antibacterial activity and pH value but sharply increased total lactic acid bacteria (at 0 to 7 days of storage) in green grass jelly synbiotic drinks. Salmonella sp. showed the highest inhibition caused by the antibacterial agents in green grass jelly synbiotic drinks while the lowest inhibition was found on Staphylococcus aureus. During storage at low temperature, green grass jelly synbiotic drinks had a total of lactic acid bacteria that ranged from 9.51 to 10.10 (Log CFU/mL) or equal to 3.24x109-1.26x1010 CFU/mL; a total of lactic acid that ranged from 0.48% to 0.87%; and pH values that ranged from 3.78 to 4.08.


Sign in / Sign up

Export Citation Format

Share Document