scholarly journals MiR-124-3p Suppresses the Dysfunction of High Glucose-Stimulated Endothelial Cells by Targeting G3BP2

2021 ◽  
Vol 12 ◽  
Author(s):  
Haijun Zhao ◽  
Yanhui He

Background: Diabetic retinopathy (DR) is the most important manifestation of diabetic microangiopathy. MicroRNAs (miRNAs), members of non-coding RNAs, have been frequently reported to regulate various diseases including DR. MiR-124-3p is involved in DR based on bioinformatics. The current study aimed to investigate the role of miR-124-3p in high glucose (HG)-treated human retinal microvascular endothelial cells (HRMECs), an in vitro model of DR.Methods: Bioinformatics analysis was applied to reveal the targets downstream miR-124-3p. A series of assays including CCK-8, luciferase reporter, western blot, and tube formation assays were used to explore the function and mechanism of miR-124-3p in HG-stimulated HRMECs.Results: We found out that miR-124-3p was downregulated in HG-stimulated HRMECs. Functionally, miR-124-3p overexpression restrained the HG-induced cell injury of HRMECs. Mechanistically, we predicted 5 potential target mRNAs of miR-124-3p. G3BP stress granule assembly factor 2 (G3BP2) was validated to bind with miR-124-3p. Rescue assays showed that miR-124-3p suppressed cell injury of HG-stimulated HRMECs through G3BP2. In addition, miR-124-3p regulated the p38MAPK signaling pathway by G3BP2, and G3BP2 promoted injury of HG-treated HRMECs through the activation of the p38MAPK signaling pathway.Conclusion: MiR-124-3p suppressed the dysfunctions of HG-treated HRMECs by targeting G3BP2 and activating the p38MAPK signaling. This new discovery provided a potential biomarker for DR treatment.

Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Vol 18 ◽  
Author(s):  
Juxuan Ruan ◽  
Lei Wang ◽  
Jiheng Dai ◽  
Jing Li ◽  
Ning Wang ◽  
...  

Objective: Angiogenesis led by brain microvascular endothelial cells (BMECs) contributes to the remission of brain injury after brain ischemia reperfusion. In this study, we investigated the effects of hydroxysafflor yellow A(HSYA) on angiogenesis of BMECs injured by OGD/R via SIRT1-HIF-1α-VEGFA signaling pathway. Methods: The OGD/R model of BMECs was established in vitro by OGD for 2h and reoxygenation for 24h. At first, the concentrations of vascular endothelial growth factor (VEGF), Angiopoietin (ang) and platelet-derived growth factor (PDGF) in supernatant were detected by ELISA, and the proteins expression of VEGFA, Ang-2 and PDGFB in BMECs were tested by western blot; the proliferation, adhesion, migration (scratch healing and transwell) and tube formation experiment of BMECs; the expression of CD31 and CD34 were tested by immunofluorescence staining. The levels of sirtuin1(SIRT1), hypoxia-inducible factor-1α (HIF-1α), VEGFA mRNA and protein were tested. Results: HSYA up-regulated the levels of VEGF, Ang and PDGF in the supernatant of BMECs under OGD/R, and the protein expression of VEGFA, Ang-2 and PDGFB were increased; HSYA could significantly alleviate the decrease of cell proliferation, adhesion, migration and tube formation ability of BMECs during OGD/R; HSYA enhanced the fluorescence intensity of CD31 and CD34 of BMECs during OGD/R; HSYA remarkably up-regulated the expression of SIRT1, HIF-1α, VEGFA mRNA and protein after OGD/R, and these increase decreased after SIRT1 was inhibited. Conclusion: SIRT1-HIF-1α-VEGFA signaling pathway is involved in HSYA improves angiogenesis of BMECs injured by OGD/R.


2018 ◽  
Vol 46 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Yan Ding ◽  
Lanlan Shan ◽  
Wenqing Nai ◽  
Xiaojun Lin ◽  
Ling Zhou ◽  
...  

Background/Aims: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. Methods: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. Results: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. Conclusions: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


2015 ◽  
Vol 37 (4) ◽  
pp. 1421-1430 ◽  
Author(s):  
Tao Zhang ◽  
Feng Tian ◽  
Jing Wang ◽  
Jing Jing ◽  
Shan-Shan Zhou ◽  
...  

Background/Aims: Endothelial cell injury and subsequent apoptosis play a key role in the development and pathogenesis of atherosclerosis, which is hallmarked by dysregulated lipid homeostasis, aberrant immunity and inflammation, and plaque-instability-associated coronary occlusion. Nevertheless, our understanding of the mechanisms underlying endothelial cell apoptosis is still limited. MicroRNA-429 (miR-29) is a known cancer suppressor that promotes cancer cell apoptosis. However, it is unknown whether miR-429 may be involved in the development of atherosclerosis through similar mechanisms. We addressed these questions in the current study. Methods: We examined the levels of endothelial cell apoptosis in ApoE (-/-) mice suppled with high-fat diet (HFD), a mouse model for atherosclerosis (simplified as HFD mice). We analyzed the levels of anti-apoptotic protein Bcl-2 and the levels of miR-429 in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-429 and 3'-UTR of Bcl-2 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-429 were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs). Results: HFD mice developed atherosclerosis in 12 weeks, while the control ApoE (-/-) mice that had received normal diet (simplified as NOR mice) did not. HFD mice had significantly lower percentage of endothelial cells and significantly higher percentage of mesenchymal cells in the aorta than NOR mice. Significantly higher levels of endothelial cell apoptosis were detected in HFD mice, resulting from decreases in Bcl-2 protein, but not mRNA. The decreases in Bcl-2 in endothelial cells were due to increased levels of miR-429, which suppressed the translation of Bcl-2 mRNA via 3'-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Conclusion: Atherosclerosis-associated endothelial cell apoptosis may result from down regulation of Bcl-2, through increased miR-429 that binds and suppresses translation of Bcl-2 mRNA.


2021 ◽  
Vol 14 (7) ◽  
pp. 981-989
Author(s):  
Qin-Xiao Qin-Xiao ◽  
◽  
Zhan-Jun Lu ◽  
Tian-Zi Zhang ◽  
Shan-Shan Li ◽  
...  

AIM: To determine the effects of safranal on choroidal neovascularization (CNV) and oxidative stress damage of human choroidal microvascular endothelial cells (HCVECs) and its possible mechanisms. METHODS: Forty-five rats were used as a laser-induced CNV model for testing the efficacy and safety of safranal (0.5 mg/kg·d, intraperitoneally) on CNV. CNV leakage on fluorescein angiography (FA) and CNV thickness on histology was compared. HCVECs were used for a H2O2-induced oxidative stress model to test the effect of safranal in vitro. MTT essay was carried to test the inhibition rate of safranal on cell viability at different concentrations. Tube formation was used to test protective effect of safranal on angiogenesis at different concentrations. mRNA transcriptome sequencing was performed to find the possible signal pathway. The expressions of different molecules and their phosphorylation level were validated by Western blotting. RESULTS: On FA, the average CNV leakage area was 0.73±0.49 and 0.31±0.11 mm2 (P?=?0.012) in the control and safranal-treated group respectively. The average CNV thickness was 127.4±18.75 and 100.6±17.34 μm (P=0.001) in control and safranal-treated group. Under the condition of oxidative stress, cell proliferation was inhibited by safranal and inhibition rates were 7.4%-35.4% at the different concentrations. For tube formation study, the number of new branches was 364 in control group and 35, 42, and 17 in 20, 40, and 80 μg/mL safranal groups respectively (P<0.01). From the KEGG pathway bubble graph, the PI3K-AKT signaling pathway showed a high gene ratio. The protein expression was elevated of insulin receptor substrate (IRS) and the phosphorylation level of PI3K, phosphoinositide-dependent protein kinase 1/2 (PDK1/2), AKT and Bcl-2 associated death promoter (BAD) was also elevated under oxidative stress condition but inhibited by safranal. CONCLUSION: Safranal can inhibit CNV both in vivo and in vitro, and the IRS-PI3K-PDK1/2-AKT-BAD signaling pathway is involved in the pathogenesis of CNV.


2015 ◽  
Vol 37 (4) ◽  
pp. 1369-1378 ◽  
Author(s):  
Tao Zhang ◽  
Feng Tian ◽  
Jing Wang ◽  
Jing Jing ◽  
Shan-Shan Zhou ◽  
...  

Background/Aims: Endothelial cell injury and subsequent death play an essential role in the pathogenesis of atherosclerosis. Autophagy of endothelial cells has a protective role against development of atherosclerosis, whereas the molecular regulation of endothelial cell autophagy is unclear. MicroRNA-30 (miR-30) is a known autophagy suppressor in some biological processes, while it is unknown whether this regulatory axis may be similarly involved in the development of atherosclerosis. Here, we aimed to answer these questions in the current study. Methods: We examined the levels of endothelial cell autophagy in ApoE (-/-) mice suppled with high-fat diet (HFD), a mouse model for atherosclerosis (simplified as HFD mice). We analyzed the levels of autophagy-associated protein 6 (ATG6, or Beclin-1) and the levels of miR-30 in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-30 and 3'-UTR of ATG6 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-30 were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs). Results: HFD mice developed atherosclerosis in 12 weeks, while the control ApoE (-/-) mice that had received normal diet (simplified as NOR mice) did not. Compared to NOR mice, HFD mice had significantly lower levels of endothelial cell autophagy, resulting from decreases in ATG6 protein, but not mRNA. The decreases in ATG6 in endothelial cells were due to HFD-induced increases in miR-30, which suppressed the translation of ATG6 mRNA via 3′-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Conclusion: Upregulation of miR-30 by HFD may impair the protective effects of endothelial cell autophagy against development of atherosclerosis through suppressing protein translation of ATG6.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jian Fang ◽  
Xiaoke Chang

Abstract Background Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes. Celastrol plays a certain role in the improvement of various diabetes complications. Therefore, this study aimed to explore whether celastrol inhibited the proliferation and angiogenesis of high glucose (HG)-induced human retinal endothelial cells (hRECs) by down-regulating the HIF1/VEGF signaling pathway. Methods The viability and proliferation of hRECs treated with glucose, celastrol or dimethyloxallyl glycine (DMOG) were analyzed by MTT assay. The invasion and tube formation ability of hRECs treated with glucose, celastrol or DMOG were in turn detected by transwell assay and tube formation assay. The expression of HIF1α and VEGF in hRECs after indicated treatment was analyzed by Western blot analysis and RT-qPCR analysis and ICAM-1 expression in hRECs after indicated treatment was detected by immunofluorescence assay Results HG induction promoted the proliferation, invasion and tube formation ability and increased the expression of HIF-1α and VEGF of hRECs, which were gradually suppressed by celastrol changing from 0.5 to 2.0 μM. DMOG was regarded as a HIF1α agonist, which attenuated the effect of celastrol on HG-induced hRECs. Conclusion Celastrol inhibited the proliferation and angiogenesis of HG-induced hRECs by down-regulating the HIF1α/VEGF signaling pathway.


Author(s):  
Juan Jin ◽  
Jianguang Gong ◽  
Li Zhao ◽  
Yiwen Li ◽  
Qiang He

Background: Diabetic nephropathy (DN) is in the first place of the causes that lead to end-stage renal disease in the world. Thus, it is urgent to develop a novel diagnostic or therapeutic strategy that could stop the progression of diabetic nephropathy. Methods: RNA-sequencing was conducted in high glucose (HG)-treated MPC5 cells (podocytes). Cell morphology was examined under a light microscope. Upon high-glucose challenge, the effects of lncRNA Hoxb3os overexpression on MPC5 cells apoptosis, viability, autophagy and Akt-mTOR signaling were evaluated using flow cytometry, Cell Counting Kit-8, qRT-PCR, and Western blotting. TUNEL staining and ELISA were performed to confirm the establishment of DN model in db/db mice. Results: High-glucose exposure dramatically altered lncRNA expression profile in MPC5 cells (fold change>2), including 305 upregulated lncRNAs and 451 downregulated lncRNAs. LncRNA Hoxb3os expression was significantly reduced in the HG-induced podocyte damage model, as well as in the renal tissues from db/db mice with spontaneous DN. Overexpression of Hoxb3os significantly reduced the apoptosis rate and increased the viability of MPC5 cells under HG conditions. Further study revealed that exogenous Hoxb3os increased autophagy level in HG-exposed MPC5 cells via abrogating Akt-mTOR signaling pathway and that the process was possibly implicated in the upregulation of SIRT1. Conclusion: LncRNA Hoxb3os protected podocytes from HG-induced damage by regulating Akt-mTOR pathway and cell autophagy. Thus, lncRNA Hoxb3os appears as a potential biomarker in the diagnosis and treatment of DN in the future.


2021 ◽  
Author(s):  
Yiqun He ◽  
Hailong Li ◽  
Zuochong Yu ◽  
Linli Li ◽  
Xujun Chen ◽  
...  

Abstract Background: Angiogenesis is essential for the tissue engineering bone formation, and osteoblasts (OBs) has been proved to play an important role in angiogenesis via various pro-angiogenic factors. However, whether the mineralized osteoblast derived exosomes (MOB-Exos) and containing let-7f-5p can promote the angiogenesis of endothelial cells (ECs) is still unknown.Methods: MOB-Exos, let-7f-5p mimicked MOB-Exos (miR mimic group) and let-7f-5p inhibited MOB-Exos (miR inhibitor group) were respectively harvested from mineralized osteoblasts (MOBs) and then co-cultured with bEnd.3. Besides, the Erk1/2 signaling pathway in ECs in miR mimic group was inhibited. Subsequently, CCK-8 assays, wound healing assays, transwell migration assays and tube formation assays were performed to detect the angiogenic capability of ECs. Dual luciferase reporter assays were conducted to verify the target genes of exosomal let-7f-5p. Results: The results showed that MOB-Exos could significantly promote the angiogenesis of ECs, which could be enhanced by mimicking exosomal let-7f-5p, and attenuated by inhibiting exosomal let-7f-5p. And the angiogenic capability of ECs was partly impaired after inhibiting the Erk1/2 signaling pathway despite co-cultured with let-7f-5p mimicked MOB-Exos. Moreover, let-7f-5p suppressed the luciferase activity of wide-type DUSP1, while mutation of DUSP1 abrogated the repressive ability of let-7f-5p. Conclusion: Based the results, our study concluded that exosomal let-7f-5p derived from MOBs could promote the angiogenesis of ECs via activating DUSP1/Erk1/2 signaling pathway, which might be a promising target for tissue engineering bone formation.


Sign in / Sign up

Export Citation Format

Share Document