collisional cross section
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 2)

Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Zi-Xuan Yue ◽  
Jun Cao

In this study, matrix solid phase dispersion (MSPD) microextraction combined with supercritical fluid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (SFC/IM-QTOF-MS) was used to analyze the multipolar compounds in plant tea. The parameters of stationary phase, mobile phase, make-up solution, temperature, and back pressure were optimized. The target analytes were gradient eluted in 8 min by supercritical CO2 on a Zorbax RX-SIL column. Collisional Cross Section (CCS) values for single and multiple fields were measured. A series of validation studies were carried out under the optimal conditions, and the linear relationship and reproducibility were good. The limits of detection were 1.4 (Scoparone (1))~70 (Naringenin (4)) ng/mL, and the limits of quantification were 4.7 (Scoparone (1))~241 (Naringenin (4)) ng/mL. The recoveries of most compounds ranged from 60.7% to 127%. As a consequence, the proposed method was used for the separation and quantitative analysis of active ingredients in caulis dendrobii.


2021 ◽  
Author(s):  
Joshua Charkow ◽  
Hannes Rost

In bottom-up mass spectrometry based proteomics, deep proteome coverage is limited by high cofragmentation rates. This occurs when more than one analyte is isolated by the quadrupole and the subsequent fragmentation event produces fragment ions of heterogeneous origin. One strategy to reduce cofragmentation rates is through effective peptide separation techniques such as chromatographic separation and, the more recently popularized, ion mobility (IM) spectrometry which separates peptides by their collisional cross section. Here we investigate the capability of the Trapped Ion Mobility Spectrometry (TIMS) device to effectively separate peptide ions and quantify the separation power of the TIMS device in the context of a Parallel Accumulation-Serial Fragmentation (PASEF) workflow. We found that TIMS IM separation increases the number of interference-free MS1 features 9.2-fold, while decreasing the average peptide density in precursor spectra 6.5 fold. In a Data Dependent Acquisition (DDA) PASEF workflow, IM separation increased the number of spectra without cofragmentation by a factor of 4.1 and the number of high quality spectra 17-fold. This observed decrease in spectral complexity results in a substantial increase in peptide identification rates when using our data-driven model. In the context of a Data Independent Acquisition (DIA), the reduction in spectral complexity resulting from IM separation is estimated to be equivalent to a 4-fold decrease in isolation window width (from 25Da to 6.5Da). Our study shows that TIMS IM separation dramatically reduces cofragmentation rates leading to an increase in peptide identification rates.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Ruti Ben-shlomi ◽  
Meirav Pinkas ◽  
Ziv Meir ◽  
Tomas Sikorsky ◽  
Or Katz ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florian Meier ◽  
Niklas D. Köhler ◽  
Andreas-David Brunner ◽  
Jean-Marc H. Wanka ◽  
Eugenia Voytik ◽  
...  

AbstractThe size and shape of peptide ions in the gas phase are an under-explored dimension for mass spectrometry-based proteomics. To investigate the nature and utility of the peptide collisional cross section (CCS) space, we measure more than a million data points from whole-proteome digests of five organisms with trapped ion mobility spectrometry (TIMS) and parallel accumulation-serial fragmentation (PASEF). The scale and precision (CV < 1%) of our data is sufficient to train a deep recurrent neural network that accurately predicts CCS values solely based on the peptide sequence. Cross section predictions for the synthetic ProteomeTools peptides validate the model within a 1.4% median relative error (R > 0.99). Hydrophobicity, proportion of prolines and position of histidines are main determinants of the cross sections in addition to sequence-specific interactions. CCS values can now be predicted for any peptide and organism, forming a basis for advanced proteomics workflows that make full use of the additional information.


2020 ◽  
Vol 98 (12) ◽  
pp. 764-770
Author(s):  
Juan L. Monribot-Villanueva ◽  
Jonathan S. Rodríguez-Fuentes ◽  
Cristina Landa-Cansigno ◽  
Dennis A. Infante-Rodríguez ◽  
Juan P. Díaz-Abad ◽  
...  

Juniperus plant species are rich sources of bioactive secondary metabolites and are traditionally used for the treatment of several illnesses, including those related to hyperglycemia and diabetes. The major bioactive compounds identified in certain species of this genus are terpenes and phenolics. Juniperus deppeana Steud. is mainly used as a wood resource and its chemical composition has been partially established. Our goal was to perform a comprehensive profiling of a methanolic extract of leaves of J. deppeana and determine its potential as a source of α-amylase and α-glucosidase inhibitors. Terpene and phenolic compounds were putatively identified based on their accurate mass spectrometric data. Regarding terpenes, we found mainly diterpenes, specifically dehydroabietic acid-like, hinokiol-like, agathic acid-like, and dihydroxyabietatrienoic acid-like compounds. Isopimaric acid was also identified and its identity was confirmed by coelution with an authentic standard via comparing retention time, mass spectrum, and collisional cross section values. For phenolic compounds, we identified mainly compounds with a chemical structure similar to the biflavonoids amentoflavone and bilobetin. Besides, the methanolic extract of J. deppeana leaves show inhibition of α-amylase (IC50 = 85.11 ± 11.91 μg mL−1) and α-glucosidase (IC50 = 32.50 ± 3.40 μg mL−1) enzymes, demonstrating a potential alternative for the search of antidiabetic natural products.


2020 ◽  
Vol 19 (10) ◽  
pp. 1677-1687 ◽  
Author(s):  
Barbara Steigenberger ◽  
Henk W. P. van den Toorn ◽  
Emiel Bijl ◽  
Jean-François Greisch ◽  
Oliver Räther ◽  
...  

Ion mobility separates molecules in the gas-phase based on their physico-chemical properties, providing information about their size as collisional cross-sections. The timsTOF Pro combines trapped ion mobility with a quadrupole, collision cell and a TOF mass analyzer, to probe ions at high speeds with on-the-fly fragmentation. Here, we show that on this platform ion mobility is beneficial for cross-linking MS (XL-MS). Cross-linking reagents covalently link amino acids in proximity, resulting in peptide pairs after proteolytic digestion. These cross-linked peptides are typically present at low abundance in the background of normal peptides, which can partially be resolved by using enrichable cross-linking reagents. Even with a very efficient enrichable cross-linking reagent, like PhoX, the analysis of cross-linked peptides is still hampered by the co-enrichment of peptides connected to a partially hydrolyzed reagent – termed mono-linked peptides. For experiments aiming to uncover protein-protein interactions these are unwanted byproducts. Here, we demonstrate that gas-phase separation by ion mobility enables the separation of mono-linked peptides from cross-linked peptide pairs. A clear partition between these two classes is observed at a CCS of 500 Å2 and a monoisotopic mass of 2 kDa, which can be used for targeted precursor selection. A total of 50-70% of the mono-linked peptides are prevented from sequencing, allowing the analysis to focus on sequencing the relevant cross-linked peptide pairs. In applications to both simple proteins and protein mixtures and a complete highly complex lysate this approach provides a substantial increase in detected cross-linked peptides.


Sign in / Sign up

Export Citation Format

Share Document