scholarly journals The immunometabolite itaconate inhibits heme synthesis and remodels cellular metabolism in erythroid precursors

Author(s):  
Jason R Marcero ◽  
James Eric Cox ◽  
Hector A Bergonia ◽  
Amy E Medlock ◽  
John D Phillips ◽  
...  

As part of the inflammatory response by macrophages, Irg1 is induced resulting in millimolar quantities of itaconate being produced. This immunometabolite remodels the macrophage metabolome and acts as an antimicrobial agent when excreted. Itaconate is not synthesized within the erythron, but instead may be acquired from central macrophages within the erythroid island. Previously we reported that itaconate inhibits hemoglobinzation of developing erythroid cells. Herein we demonstrate that this is accomplished by inhibition of tetrapyrrole synthesis. In differentiating erythroid precursors, cellular heme and protoporphyrin IX synthesis are reduced by itaconate at an early step in the pathway. In addition, itaconate causes global alterations in cellular metabolite pools resulting in elevated levels of succinate, 2-hydroxyglutarate, pyruvate, glyoxylate, and intermediates of glycolytic shunts. Itaconate taken up by the developing erythron can be converted to itaconyl-CoA by the enzyme succinyl-CoA:glutarate-CoA transferase. Propionyl-CoA, propionyl-carnitine, methylmalonic acid, heptadecanoic acid and nonanoic acid, as well as the aliphatic amino acids threonine, valine, methionine, and isoleucine are increased, likely due to the impact of endogenous itaconyl-CoA synthesis. We further show that itaconyl-CoA is a competitive inhibitor of the erythroid-specific 5-aminolevulinate synthase (ALAS2), the first and rate-limiting step in heme synthesis. These findings strongly support our hypothesis that the inhibition of heme synthesis observed in chronic inflammation is mediated not only by iron limitation, but also by limitation of tetrapyrrole synthesis at the point of ALAS2 catalysis by itaconate. Thus, we propose that macrophage-derived itaconate promotes anemia during an inflammatory response in the erythroid compartment.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peter Dornbos ◽  
Amanda Jurgelewicz ◽  
Kelly A. Fader ◽  
Kurt Williams ◽  
Timothy R. Zacharewski ◽  
...  

Abstract The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. The prototypical ligand of the AHR is an environmental contaminant called 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD exposure is associated with many adverse health outcomes in humans including non-alcoholic fatty liver disease (NAFLD). Previous studies suggest that AHR ligands alter cholesterol homeostasis in mice through repression of genes involved in cholesterol biosynthesis, such as Hmgcr, which encodes the rate-limiting enzyme of cholesterol biosynthesis called 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR). In this study, we sought to characterize the impact of HMGCR repression in TCDD-induced liver injury. C57BL/6 mice were exposed to TCDD in the presence or absence of simvastatin, a competitive inhibitor of HMGCR. Simvastatin exposure decreased TCDD-induced hepatic lipid accumulation in both sexes, but was most prominent in females. Simvastatin and TCDD (S + T) co-treatment increased hepatic AHR-battery gene expression and liver injury in male, but not female, mice. In addition, the S + T co-treatment led to an increase in hepatic glycogen content that coincides with heavier liver in female mice. Results from this study suggest that statins, which are amongst the most prescribed pharmaceuticals, may protect from AHR-mediated steatosis, but alter glycogen metabolism and increase the risk of TCDD-elicited liver damage in a sex-specific manner.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2058
Author(s):  
Nicole Reisinger ◽  
Dominik Wendner ◽  
Nora Schauerhuber ◽  
Elisabeth Mayer

Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (RECs) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in RECs. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.


Inflammation ◽  
2021 ◽  
Author(s):  
Shangrila Parvin ◽  
Clintoria R. Williams ◽  
Simone A. Jarrett ◽  
Sandra M. Garraway

Abstract— Accumulating evidence supports that spinal cord injury (SCI) produces robust inflammatory plasticity. We previously showed that the pro-inflammatory cytokine tumor necrosis factor (TNF)α is increased in the spinal cord after SCI. SCI also induces a systemic inflammatory response that can impact peripheral organ functions. The kidney plays an important role in maintaining cardiovascular health. However, SCI-induced inflammatory response in the kidney and the subsequent effect on renal function have not been well characterized. This study investigated the impact of high and low thoracic (T) SCI on C-fos, TNFα, interleukin (IL)-1β, and IL-6 expression in the kidney at acute and sub-chronic timepoints. Adult C57BL/6 mice received a moderate contusion SCI or sham procedures at T4 or T10. Uninjured mice served as naïve controls. mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNFα, and C-fos, and TNFα and C-fos protein expression were assessed in the kidney and spinal cord 1 day and 14 days post-injury. The mRNA levels of all targets were robustly increased in the kidney and spinal cord, 1 day after both injuries. Whereas IL-6 and TNFα remained elevated in the spinal cord at 14 days after SCI, C-fos, IL-6, and TNFα levels were sustained in the kidney only after T10 SCI. TNFα protein was significantly upregulated in the kidney 1 day after both T4 and T10 SCI. Overall, these results clearly demonstrate that SCI induces robust systemic inflammation that extends to the kidney. Hence, the presence of renal inflammation can substantially impact renal pathophysiology and function after SCI.


Lung Cancer ◽  
2003 ◽  
Vol 40 (3) ◽  
pp. 295-299 ◽  
Author(s):  
Hazel R Scott ◽  
Donald C McMillan ◽  
Duncan J.F Brown ◽  
Lynn M Forrest ◽  
Colin S McArdle ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Yasuko K Bando ◽  
Haruya Kawase ◽  
Kazuyuki Nishimura ◽  
Akio Monji ◽  
Toyoaki Murohara

Aim: The purpose of this study is to screen the target metabolites of diabetic microangiopathy in heart by use of whole heart metabolome analysis. Methods: Diet-induced type 2 diabetic mouse were divided into two groups; control and those treated with diabetic remedy GLP-1 receptor agonist Ex-4 for 5 weeks. Mice were euthanized and analyzed at the age of 16 week-old. Results: The capillary density of the T2DM was reduced as compared to those non-diabetic counterparts, which was restored by Ex4 treatment. Changes in angiogenic signals detected by immunoblotting analysis revealed that the phosphorylation levels of eNOS and AMPK were elevated by Ex-4, but those Akt remained unchanged. Tube formation assay revealed that Ex-4 increased tube length and branch points in HUVECs. Consistently with the trend that was observed in vivo experiment, AMPK and eNOS phosphorylation levels were enhanced by Ex4 without affecting Akt phosphorylation. To screen the candidate metabolites that is responsible for the diabetic microvasculopathy in GLP-1-dependent fashion, we performed metabolome analysis by using the whole heart of each mouse. The hierarchical cluster analysis revealed that nonanoic acid (NNA) was the only metabolite that increased in type 2 diabetic mice with concomitant decline by Ex-4 treatment. We next examined the impact of nonanoic acid on in vitro angiogenesis and found that NNA suppressed tube length and branch points in HUVECs in a dose-dependent fashion. Interestingly, NNA canceled eNOS and AMPK phosphorylation that was enhanced by Ex4. Conclusion: GLP-1 ameliorated diabetic microvasculopathy via the AMPK and eNOS axis. NNA is presumably one of the novel anti-angiogenic metabolites that causes diabetic microangiopathy.


Reproduction ◽  
2021 ◽  
Author(s):  
Ourlad Alzeus Gaddi Tantengco ◽  
Talar Kechichian ◽  
Kathleen L Vincent ◽  
Richard B Pyles ◽  
Paul Mark B Medina ◽  
...  

Ureaplasma parvum is a commensal bacterium in the female reproductive tract but has been associated with pregnancy complications such as preterm prelabor rupture of membranes and preterm birth (PTB). However, the pathologic effects of U. parvum in the cervix, that prevents ascending infections during pregnancy, are still poorly understood. To determine the impact of U. parvum on the cervix, ectocervical (ecto) and endocervical (endo) epithelial and stromal cells were incubated with U. parvum. Macrophages were also tested as a proxy for cervical macrophages to determine the antigenicity of U. parvum. The effects of U. parvum, including influence on cell cycle and cell death, antimicrobial peptide production, epithelial-to-mesenchymal transition (EMT), and inflammatory cytokine levels, were assessed. U. parvum colonized cervical epithelial and stromal cells 4 hours post-infection. Like uninfected control, U. parvum neither inhibited cell cycle progression and nor caused cell death in cervical epithelial and stromal cells. U. parvum increased the production of the antimicrobial peptides (AMPs) cathelicidin and human β-defensin 3 and exhibited weak signs of EMT evidenced by decreased cytokeratin 18 and increased vimentin expression in cervical epithelial cells. U. parvum induced a pro-inflammatory environment (cytokines) and increased MMP-9 in cervical epithelial cells but promoted pro- and anti-inflammatory responses in cervical stromal cells and macrophages. U. parvum may colonize the cervical epithelial layer, but induction of AMPs and anti-inflammatory response may protect the cervix and may prevent ascending infections that can cause PTB. These findings suggest that U. parvum is a weak inducer of inflammation in the cervix.


2020 ◽  
Author(s):  
Hongxia Mei ◽  
Ying Tao ◽  
Tianhao Zhang ◽  
Feng Qi

Abstract Background: Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are critical life-threatening syndromes characterized by the infiltration of a large number of neutrophils that lead to an excessive inflammatory response. Emodin (Emo) is a naturally occurring anthraquinone derivative and an active ingredient of Chinese medicine. It is believed to have anti-inflammatory effects. In this study, we examined the impact of Emo on the pulmonary inflammatory response and the neutrophil function in a rat model of lipopolysaccharide (LPS)-induced ALI.Results: Treatment with Emo protected rat against LPS-induced ALI. Compared to untreated rat, Emo-treated rat exhibited significantly ameliorated lung pathological changes and decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). However, Emo has no protective effect on the rat model of acute lung injury with neutrophil deficiency. In addition, treatment with Emo enhanced the bactericidal capacity of LPS-induced neutrophils via the up-regulation of the ability of neutrophils to phagocytize bacteria and generate neutrophil extracellular traps (NETs). Emo also downregulated the neutrophil respiratory burst and the expression of reactive oxygen species (ROS) in LPS-stimulated neutrophils, alleviating the damage of neutrophils to surrounding tissues. Finally, Emo can accelerate the resolution of inflammation by promoting apoptosis of neutrophils. Conclusion: Our results provide the evidence that Emo could ameliorates LPS-induced ALI via its anti-inflammatory action by modulating the function of neutrophils. Emo may be a promising preventive and therapeutic agent in the treatment of ALI.


2021 ◽  
Vol 108 (Supplement_7) ◽  
Author(s):  
Julian Aquilina ◽  
Georgios Geropoulos ◽  
Ioannis Loufopoulos ◽  
Anaya Gupte ◽  
Sofoklis Mitsos ◽  
...  

Abstract Aims Post-operative systemic inflammatory reaction is part of the stress response caused by major thoracic surgery. Different anaesthetic agents used affect different immunological phenomena. This systematic review evaluates the impact of anaesthetic agents on the immunological profile and the associated clinical significance. Methods A systematic review of MEDLINE, EMBASE and Cohrane databases to explore how different anaesthetic agents affect post-operative inflammatory response. Results A total of nine studies were included in our analysis. Peri-operative use of dexmedetomidine, propofol, sevoflurane, isoflurane, ropivacaine, sufentanil, naloxone and clonidine were compared, based on their effect on the systemic release of inflammatory markers. Variance on the levels of the circulating inflammatory molecules such as interleukins, interferon-γ, tumor necrosis factor a and on the cellular response including natural killer, CD4 and CD8 T cells, were observed among different anaesthetic agents. Conclusions Inflammation improves immunity and regenerative cell recruitment, however excessive responses can lead to delayed wound healing, organ dysfunction and increased morbidity and mortality. There is still uncertainty regarding the role of immune changes on clinical outcomes of patients undergoing thoracic surgery, and more research is needed to explore other immunological effects related to anaesthetic agents.


Sign in / Sign up

Export Citation Format

Share Document