scholarly journals Integrated polarization-sensitive amplification system for digital information transmission

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenhao Ran ◽  
Zhihui Ren ◽  
Pan Wang ◽  
Yongxu Yan ◽  
Kai Zhao ◽  
...  

AbstractPolarized light can provide significant information about objects, and can be used as information carrier in communication systems through artificial modulation. However, traditional polarized light detection systems integrate polarizers and various functional circuits in addition to detectors, and are supplemented by complex encoding and decoding algorithms. Although the in-plane anisotropy of low-dimensional materials can be utilized to manufacture polarization-sensitive photodetectors without polarizers, the low anisotropic photocurrent ratio makes it impossible to realize digital output of polarized information. In this study, we propose an integrated polarization-sensitive amplification system by introducing a nanowire polarized photodetector and organic semiconductor transistors, which can boost the polarization sensitivity from 1.24 to 375. Especially, integrated systems are universal in that the systems can increase the anisotropic photocurrent ratio of any low-dimensional material corresponding to the polarized light. Consequently, a simple digital polarized light communication system can be realized based on this integrated system, which achieves certain information disguising and confidentiality effects.

1999 ◽  
Vol 588 ◽  
Author(s):  
Y. Ohno ◽  
S. Takeda

AbstractWe have developed an apparatus for polarized cathodoluminescence (CL) spectroscopy combined with transmission electron microscopy (TEM), that enables us to obtain simultaneously structural data in higher spatial resolution by TEM and polarized luminescence spectra by CL of the same microscopic area. The polarized-CL/TEM method is very useful to study the optical properties of low-dimensional microstructures in semiconducting materials. We have applied the method to examine the optical property of antiphase boundaries in CuPt-ordered GaInP2 and found, for the first time, the polarized light emission from the APBs whose habit planes are parallel to the (T11) and (1T0) atomic planes.


2000 ◽  
Vol 355 (1401) ◽  
pp. 1187-1190 ◽  
Author(s):  
Craig W. Hawryshyn

Polarization vision in vertebrates has been marked with significant controversy over recent decades. In the last decade, however, models from two laboratories have indicated that the spatial arrangement of photoreceptors provides the basis for polarization sensitivity.Work in my laboratory, in collaboration with I. Novales Flamarique and F. I. Harosi, has shown that polarization sensitivity depends on a well–defined square cone mosaic pattern and that the biophysical properties of the square cone mosaic probably account for polarization vision in the ultraviolet spectrum. The biophysical mechanism appears to be based on the selective reflection of axial–polarized light by the partitioning membrane, formed along the contact zone between the members of the double cones, onto neighbouring ultraviolet–sensitive cones. In this short review, I discuss the historical development of this research problem.


2003 ◽  
Vol 13 (06) ◽  
pp. 1599-1608 ◽  
Author(s):  
Chao Tao ◽  
Gonghuan Du ◽  
Yu Zhang

In this paper, we propose a new approach to breaking down chaotic communication scheme by attacking its encryption keys. A remarkable advancement is that it can decode the hidden message exactly. This makes it become possible to break down some cascaded chaotic communication systems. We also decode digital information from the cascaded heterogeneous chaotic communication system and give the simulation results.


2003 ◽  
Vol 1 ◽  
pp. 259-263 ◽  
Author(s):  
F. Kienle ◽  
H. Michel ◽  
F. Gilbert ◽  
N. Wehn

Abstract. Maximum-A-Posteriori (MAP) decoding algorithms are important HW/SW building blocks in advanced communication systems due to their ability to provide soft-output informations which can be efficiently exploited in iterative channel decoding schemes like Turbo-Codes. Multi-standards demand flexible implementations on programmable platforms. In this paper we analyze a quantized turbo-decoder based on a Max-Log-MAP algorithm with Extrinsic Scaling Factor (ESF). Its communication performance approximate to a Turbo-Decoder with a Log-MAP algorithm and is less sensitive to quantization effects. We present Turbo-Decoder implementations on state-of-the-art DSPs and show that only a Max-Log-MAP implementation fulfills a throughput requirement of ~2 Mbit/s. The negligible overhead for the ESF implementation strengthen the use of Max-Log-MAP with ESF implementation on programmable platforms.


2001 ◽  
Vol 204 (14) ◽  
pp. 2383-2390 ◽  
Author(s):  
Raymon M. Glantz

SUMMARY It is proposed that polarization sensitivity at the most peripheral stages of the crayfish visual system (lamina ganglionaris and medulla externa) is used to enhance contrast and thus may contribute to motion detection in low contrast environments. The four classes of visual interneurons that exhibit polarization sensitivity (lamina monopolar cells, tangential cells, sustaining fibers and dimming fibers) are not sensitive exclusively to polarized light but also respond to unpolarized contrast stimuli. Furthermore, many of these cells and the sustaining fibers in particular exhibit a greater differential e-vector responsiveness to a changing e-vector than to e-vector variations among steady-state stimuli. While all four cell types respond modestly to light flashes at an e-vector of 90° to the preferred orientation, the dynamic response to a changing e-vector is small or absent at this orientation. Because the sustaining fibers exhibit polarization sensitivity, and they provide afferent input to a subset of optomotor neurons, the latter were also tested for polarization sensitivity. The optomotor neurons involved in compensatory reflexes for body pitch were differentially sensitive to the e-vector angle of a flash of light, with maximum responses for e-vectors near the vertical. The motor neurons also exhibited a maximum response near the vertical e-vector to a continuously rotating polarizer. Two scenarios are described in which the sensitivity to a changing e-vector can produce motion responses in the absence of intensity contrast.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yuika Saito ◽  
Yoshiro Ohashi ◽  
Prabhat Verma

It is a general belief in apertureless near-field microscopy that the so-calledp-polarization configuration, where the incident light is polarized parallel to the axis of the probe, is advantageous to its counterpart, thes-polarization configuration, where the incident light is polarized perpendicular to the probe axis. While this is true for most samples under common near-field experimental conditions, there are samples which respond better to thes-polarization configuration due to their orientations. Indeed, there have been several reports that have discussed such samples. This leads us to an important requirement that the near-field experimental setup should be equipped with proper sensitivity for measurements withs-polarization configuration. This requires not only creation of effective s-polarized illumination at the near-field probe, but also proper enhancement of s-polarized light by the probe. In this paper, we have examined thes-polarization enhancement sensitivity of near-field probes by measuring and evaluating the near-field Rayleigh scattering images constructed by a variety of probes. We found that thes-polarization enhancement sensitivity strongly depends on the sharpness of the apex of near-field probes. We have discussed the efficient value of probe sharpness by considering a balance between the enhancement and the spatial resolution, both of which are essential requirements of apertureless near-field microscopy.


2011 ◽  
Vol 366 (1565) ◽  
pp. 757-762 ◽  
Author(s):  
Lydia M. Mäthger ◽  
Kenneth J. Lohmann ◽  
Colin J. Limpus ◽  
Kerstin A. Fritsches

Sea turtles undertake long migrations in the open ocean, during which they rely at least partly on magnetic cues for navigation. In principle, sensitivity to polarized light might be an additional sensory capability that aids navigation. Furthermore, polarization sensitivity has been linked to ultraviolet (UV) light perception which is present in sea turtles. Here, we tested the ability of hatchling loggerheads ( Caretta caretta ) to maintain a swimming direction in the presence of broad-spectrum polarized light. At the start of each trial, hatchling turtles, with their magnetic sense temporarily impaired by magnets, successfully established a steady course towards a light-emitting diode (LED) light source while the polarized light field was present. When the LED was removed, however, hatchlings failed to maintain a steady swimming direction, even though the polarized light field remained. Our results have failed to provide evidence for polarized light perception in young sea turtles and suggest that alternative cues guide the initial migration offshore.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tie Jun Cui ◽  
Shuo Liu ◽  
Guo Dong Bai ◽  
Qian Ma

In modern wireless communications, digital information is firstly converted to analog signal by a digital-analog convertor, which is then mixed to high-frequency microwave to be transmitted through a series of devices including modulator, mixer, amplifier, filter, and antenna and is finally received by terminals via a reversed process. Although the wireless communication systems have evolved significantly over the past thirty years, the basic architecture has not been challenged. Here, we propose a method to transmit digital information directly via programmable coding metasurface. Since the coding metasurface is composed of ‘0’ and ‘1’ digital units with opposite phase responses, the digital information can be directly modulated to the metasurface with certain coding sequences and sent to space under the illumination of feeding antenna. The information, being modulated in radiation patterns of the metasurface, can be correctly received by multiple receivers distributed in different locations. This method provides a completely new architecture for wireless communications without using complicated digital-analog convertor and a series of active/passive microwave devices. We build up a prototype to validate the new architecture experimentally, which may find promising applications where information security is highly demanded.


Sign in / Sign up

Export Citation Format

Share Document