enhancer prediction
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zhanlin Chen ◽  
Jing Zhang ◽  
Jason Liu ◽  
Yi Dai ◽  
Donghoon Lee ◽  
...  

AbstractSummaryMapping distal regulatory elements, such as enhancers, is the cornerstone for investigating genome evolution, understanding critical biological functions, and ultimately elucidating how genetic variations may influence diseases. Previous enhancer prediction methods have used either unsupervised approaches or supervised methods with limited training data. Moreover, past approaches have operationalized enhancer discovery as a binary classification problem without accurate enhancer boundary detection, producing low-resolution annotations with redundant regions and reducing the statistical power for downstream analyses (e.g., causal variant mapping and functional validations). Here, we addressed these challenges via a two-step model called DECODE. First, we employed direct enhancer activity readouts from novel functional characterization assays, such as STARR-seq, to train a deep neural network classifier for accurate cell-type-specific enhancer prediction. Second, to improve the annotation resolution (∼500 bp), we implemented a weakly-supervised object detection framework for enhancer localization with precise boundary detection (at 10 bp resolution) using gradient-weighted class activation mapping.ResultsOur DECODE binary classifier outperformed the state-of-the-art enhancer prediction methods by 24% in transgenic mouse validation. Further, DECODE object detection can condense enhancer annotations to only 12.6% of the original size, while still reporting higher conservation scores and genome-wide association study variant enrichments. Overall, DECODE improves the efficiency of regulatory element mapping with graphic processing units for deep-learning applications and is a powerful tool for enhancer prediction and boundary [email protected]


Genome ◽  
2020 ◽  
pp. 1-23
Author(s):  
Ian C. Tobias ◽  
Luis E. Abatti ◽  
Sakthi D. Moorthy ◽  
Shanelle Mullany ◽  
Tiegh Taylor ◽  
...  

Enhancers are cis-regulatory sequences located distally to target genes. These sequences consolidate developmental and environmental cues to coordinate gene expression in a tissue-specific manner. Enhancer function and tissue specificity depend on the expressed set of transcription factors, which recognize binding sites and recruit cofactors that regulate local chromatin organization and gene transcription. Unlike other genomic elements, enhancers are challenging to identify because they function independently of orientation, are often distant from their promoters, have poorly defined boundaries, and display no reading frame. In addition, there are no defined genetic or epigenetic features that are unambiguously associated with enhancer activity. Over recent years there have been developments in both empirical assays and computational methods for enhancer prediction. We review genome-wide tools, CRISPR advancements, and high-throughput screening approaches that have improved our ability to both observe and manipulate enhancers in vitro at the level of primary genetic sequences, chromatin states, and spatial interactions. We also highlight contemporary animal models and their importance to enhancer validation. Together, these experimental systems and techniques complement one another and broaden our understanding of enhancer function in development, evolution, and disease.


2020 ◽  
Vol 17 (8) ◽  
pp. 807-814 ◽  
Author(s):  
Anurag Sethi ◽  
Mengting Gu ◽  
Emrah Gumusgoz ◽  
Landon Chan ◽  
Koon-Kiu Yan ◽  
...  

2019 ◽  
Vol 20 (S15) ◽  
Author(s):  
Hongda Bu ◽  
Jiaqi Hao ◽  
Yanglan Gan ◽  
Shuigeng Zhou ◽  
Jihong Guan

Abstract Background Super-enhancers (SEs) are clusters of transcriptional active enhancers, which dictate the expression of genes defining cell identity and play an important role in the development and progression of tumors and other diseases. Many key cancer oncogenes are driven by super-enhancers, and the mutations associated with common diseases such as Alzheimer’s disease are significantly enriched with super-enhancers. Super-enhancers have shown great potential for the identification of key oncogenes and the discovery of disease-associated mutational sites. Results In this paper, we propose a new computational method called DEEPSEN for predicting super-enhancers based on convolutional neural network. The proposed method integrates 36 kinds of features. Compared with existing approaches, our method performs better and can be used for genome-wide prediction of super-enhancers. Besides, we screen important features for predicting super-enhancers. Conclusion Convolutional neural network is effective in boosting the performance of super-enhancer prediction.


2019 ◽  
Author(s):  
Maria Osmala ◽  
Harri Lähdesmäki

AbstractBackgroundThe binding sites of transcription factors (TFs) and the localisation of histone modifications in the human genome can be quantified by the chromatin immunoprecipitation assay coupled with next-generation sequencing (ChIP-seq). The resulting chromatin feature data has been successfully adopted for genome-wide enhancer identification by several unsupervised and supervised machine learning methods. However, the current methods predict different numbers and different sets of enhancers for the same cell type and do not utilise the pattern of the ChIP-seq coverage profiles efficiently.ResultsIn this work, we propose a PRobabilistic Enhancer PRedictIoN Tool (PREPRINT) that assumes characteristic coverage patterns of chromatin features at enhancers and employs a statistical model to account for their variability. PREPRINT defines probabilistic distance measures to quantify the similarity of the genomic query regions and the characteristic coverage patterns. The probabilistic scores of the enhancer and non-enhancer samples are utilised to train a kernel-based classifier. The performance of the method is demonstrated on ENCODE data for two cell lines. The predicted enhancers are computationally validated based on the transcriptional regulatory protein binding sites and compared to the predictions obtained by state-of-the-art methods.ConclusionPREPRINT performs favorably to the state-of-the-art methods, especially when requiring the methods to predict a larger set of enhancers. PREPRINT generalises successfully to data from cell type not utilised for training, and often the PREPRINT performs better than the previous methods. The PREPRINT enhancers are less sensitive to the choice of prediction threshold. PREPRINT identifies biologically validated enhancers not predicted by the competing methods. The enhancers predicted by PREPRINT can aid the genome interpretation in functional genomics and clinical studies.Availabilityhttps://github.com/MariaOsmala/[email protected]


2019 ◽  
Vol 20 (7) ◽  
pp. 1704 ◽  
Author(s):  
Chengchao Wu ◽  
Jin Chen ◽  
Yunxia Liu ◽  
Xuehai Hu

Abstract: Deciphering the code of cis-regulatory element (CRE) is one of the core issues of current biology. As an important category of CRE, enhancers play crucial roles in gene transcriptional regulations in a distant manner. Further, the disruption of an enhancer can cause abnormal transcription and, thus, trigger human diseases, which means that its accurate identification is currently of broad interest. Here, we introduce an innovative concept, i.e., abelian complexity function (ACF), which is a more complex extension of the classic subword complexity function, for a new coding of DNA sequences. After feature selection by an upper bound estimation and integration with DNA composition features, we developed an enhancer prediction model with hybrid abelian complexity features (HACF). Compared with existing methods, HACF shows consistently superior performance on three sources of enhancer datasets. We tested the generalization ability of HACF by scanning human chromosome 22 to validate previously reported super-enhancers. Meanwhile, we identified novel candidate enhancers which have supports from enhancer-related ENCODE ChIP-seq signals. In summary, HACF improves current enhancer prediction and may be beneficial for further prioritization of functional noncoding variants.


Sign in / Sign up

Export Citation Format

Share Document