interspecific diversity
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Huang Zhen ◽  
Luohao Xu ◽  
Cheng Cai ◽  
Yitao Zhou ◽  
Jing Liu ◽  
...  

The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding into the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention or rearrangements between descendants of whole genome duplications (WGDs), which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its 3D chromatin architecture at the onset of zygotic activation, and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes, and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.


ALGAE ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 299-314
Author(s):  
Sang Ah Park ◽  
Hae Jin Jeong ◽  
Jin Hee Ok ◽  
Hee Chang Kang ◽  
Ji Hyun You ◽  
...  

Some species in the dinoflagellate genus Alexandrium are bioluminescent. Of the 33 formally described Alexandrium species, the bioluminescence capability of only nine species have been tested, and eight have been reported to be bioluminescent. The present study investigated the bioluminescence capability of seven Alexandrium species that had not been tested. Alexandrium mediterraneum, A. pohangense, and A. tamutum were bioluminescent, but A. andersonii, A. hiranoi, A. insuetum, and A. pseudogonyaulax were not. We also measured the bioluminescent intensity of A. affine, A. fraterculus, A. mediterraneum, A. ostenfeldii, A. pacificum, A. pohangense, A. tamarense, and A. tamutum. The mean 200-second-integrated bioluminescence intensity per cell ranged from 0.02 to 32.2 × 104 relative luminescence unit per cell (RLU cell-1), and the mean maximum bioluminescence intensity per cell per second (BLMax) ranged from 0.01 to 10.3 × 104 RLU cell-1 s-1-1. BLMax was significantly correlated with the maximum growth rates of Alexandrium species, except for A. tamarense. A phylogenetic tree based on large subunit ribosomal DNA (LSU rDNA) showed that the bioluminescent species A. affine, A. catenella, A. fraterculus, A. mediterraneum, A. pacificum, and A. tamarense formed a large clade. However, the toxicity or mixotrophic capability of these species was split. Thus, their bioluminescence capability in this clade was more consistent than their toxicity or mixotrophic capability. Phylogenetic trees based on LSU rDNA and the luciferase gene of Alexandrium were consistent except for A. pohangense. The results of the present study can provide a basis for understanding the interspecific diversity in bioluminescence of Alexandrium.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 545
Author(s):  
Thomas E. Marler

Greater knowledge concerning the interspecific diversity of the plant leaf ionome is required to effectively understand the spatiotemporal dynamics of biogeochemistry, but Micronesia has been ignored in this literature. The objectives of this study were to quantify the leaf ionome, resorption efficiency, and stoichiometry of leaves from 25 plant species representing Guam’s coastal karst forests. Carbon and nitrogen were quantified by dry combustion, and other minerals and metals were quantified by spectrometry. Nitrogen and calcium concentrations in Guam’s green leaves exceeded the published global means, but manganese and copper concentrations were less than the global means. The remainder of the elements were within the expected ranges. Nutrient resorption rates exhibited a decreasing order of potassium > phosphorus > nitrogen > zinc > copper. The term “accretion efficiency” is introduced to describe the accumulation of an element throughout leaf aging and senescence, and calcium and iron exhibited substantial accretion efficiency in this study. Stoichiometry relations indicated that Guam’s karst forest is most limited by phosphorus and then secondarily limited by nitrogen, although several individual taxa exhibited co-limitation by potassium. Five of the species are officially listed on extinction threat lists. Of these, the Malvaceae tree Heriteria longipetiolata exhibited leaf traits depicting the most recalcitrant litter characteristics, and the Fabaceae tree Serianthes nelsonii exhibited leaf traits depicting the most labile litter characteristics. The contributions of these two tree species to spatiotemporal diversity in biogeochemistry appear to be profound, indicating species recovery efforts are of paramount importance for maintaining ecosystem function and soil heterotroph biodiversity in northern Guam.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Deiviane Aparecida Calegar ◽  
Kerla Joeline Lima Monteiro ◽  
Polyanna Araújo Alves Bacelar ◽  
Brenda Bulsara Costa Evangelista ◽  
Mayron Morais Almeida ◽  
...  

Abstract Background Entamoeba species harbored by humans have different degrees of pathogenicity. The present study explores the intra- and interspecific diversity, phylogenetic relationships, prevalence and distribution of tetra- and octonucleated cyst-producing Entamoeba in different Brazilian regions. Methods Cross-sectional studies were performed to collect fecal samples (n = 1728) and sociodemographic data in communities located in four Brazilian biomes: Atlantic Forest, Caatinga, Cerrado, and Amazon. Fecal samples were subjected to molecular analysis by partial small subunit ribosomal DNA sequencing (SSU rDNA) and phylogenetic analysis. Results Light microscopy analysis revealed that tetranucleated cysts were found in all the studied biomes. The highest positivity rates were observed in the age group 6–10 years (23.21%). For octonucleated cysts, positivity rates ranged from 1 to 55.1%. Sixty SSU rDNA Entamoeba sequences were obtained, and four different species were identified: the octonucleated E. coli, and the tetranucleated E. histolytica, E. dispar, and E. hartmanni. Novel haplotypes (n = 32) were characterized; however, new ribosomal lineages were not identified. The Entamoeba coli ST1 subtype predominated in Atlantic Forest and Caatinga, and the ST2 subtype was predominant in the Amazon biome. E. histolytica was detected only in the Amazon biome. In phylogenetic trees, sequences were grouped in two groups, the first containing uni- and tetranucleated and the second containing uni- and octonucleated cyst-producing Entamoeba species. Molecular diversity indexes revealed a high interspecific diversity for tetra- and octonucleated Entamoeba spp. (H ± SD = 0.9625 ± 0.0126). The intraspecific diversity varied according to species or subtype: E. dispar and E. histolytica showed lower diversity than E. coli subtypes ST1 and ST2 and E. hartmanni. Conclusions Tetra- and octonucleated cyst-producing Entamoeba are endemic in the studied communities; E. histolytica was found in a low proportion and only in the Amazon biome. With regard to E. coli, subtype ST2 was predominant in the Amazon biome. The molecular epidemiology of Entamoeba spp. is a field to be further explored and provides information with important implications for public health.


2020 ◽  
Author(s):  
Jingling Li ◽  
Jianmin Tang ◽  
Siyuan Zeng ◽  
Fang Han ◽  
Jing Yuan ◽  
...  

Abstract Background Pilea is a genus of perennial herbs from the family Urticaceae, which are used for courtyard ornamental. For some species, they are used as medicinal plants in traditional Chinese medicine as well. The morphological characteristics of medicinal species from Pilea are similar, and it is difficult to accurately distinguish them based only on morphological characteristics. Besides, the species classification of Pilea are still controversial. The classification of many species are still in an unresolved state. At present, there is no information about the chloroplast genomes of Pilea, which limits our further understanding of this genus. Here, we first reported 4 chloroplast genomes of Pilea taxa (P. mollis, P. glauca, P. peperomioides and P. serpyllacea), and performed comprehensive comparative analysis. Results The four chloroplast genomes have similar structural characteristics and gene order with other angiosperms. These genomes all have a typical quartile structure, which contains 113 unique genes, including 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Besides, we detected SSRs and repeat sequences, and analyzed the expansion/contraction of IR regions. In particular, the comparative analysis showed a rather level of sequence divergence in the non-coding regions, even in the protein-coding regions of the four genome sequences, suggesting a high level of genetic diversity in Pilea. Moreover, we identified eight hypervariable regions, including petN-psbM; psbZ-trnG-GCC; trnT-UGU-trnL-UAA; accD-psbI; ndhF-rpl32; rpl32-trnL-UAG; ndhA-intron and ycf1, are proposed for use as DNA barcode regions. Phylogenetic analysis showed that four Pilea species form a monophyletic cluster with a 100% bootstrap value. Conclusion The results obtained here could provide abundant information for the phylogenetic position of Pilea and further species identification. High levels of sequences divergence promote our understanding of the interspecific diversity of this genus, also provide reference for the rational classification of unsolved species in the future.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1155
Author(s):  
Jamile S. da Costa ◽  
Ellen de Nazaré S. da Cruz ◽  
William N. Setzer ◽  
Joyce Kelly do R. da Silva ◽  
José Guilherme S. Maia ◽  
...  

The Eugenia and Syzygium genera include approximately 1000 and 1800 species, respectively, and both belong to the Myrtaceae. Their species present economic and medicinal importance and pharmacological properties. Due to their chemical diversity and biological activity, we are reporting the essential oils of 48 species of these two genera, which grow in South America and found mainly in Brazil. Chemically, a total of 127 oil samples have been described and displayed a higher intraspecific and interspecific diversity for both Eugenia spp. and Syzygium spp., according to the site of collection or seasonality. The main volatile compounds were sesquiterpene hydrocarbons and oxygenated sesquiterpenes, mainly with caryophyllane and germacrane skeletons and monoterpenes of mostly the pinane type. The oils presented many biological activities, especially antimicrobial (antifungal and antibacterial), anticholinesterase, anticancer (breast, gastric, melanoma, prostate), antiprotozoal (Leishmania spp.), antioxidant, acaricidal, antinociceptive and anti-inflammatory. These studies can contribute to the rational and economic exploration of Eugenia and Syzygium species once they have been identified as potent natural and alternative sources to the production of new herbal medicines.


2020 ◽  
Vol 13 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Akana E. Noto ◽  
Tarik C. Gouhier

Sign in / Sign up

Export Citation Format

Share Document