mitochondrial morphogenesis
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Ziyun Yang ◽  
Liang Wang ◽  
Cheng Yang ◽  
Shiming Pu ◽  
Ziqi Guo ◽  
...  

Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.


Circulation ◽  
2021 ◽  
Vol 144 (5) ◽  
pp. 403-406
Author(s):  
Ze’e Chen ◽  
Siting Zhu ◽  
Hong Wang ◽  
Li Wang ◽  
Jianlin Zhang ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 7835
Author(s):  
Frederik Braun ◽  
Andreas Hentschel ◽  
Albert Sickmann ◽  
Theodore Marteau ◽  
Swantje Hertel ◽  
...  

Mutations in the SPATA5 gene are associated with epilepsy, hearing loss and mental retardation syndrome (EHLMRS). While SPATA5 is ubiquitously expressed and is attributed a role within mitochondrial morphogenesis during spermatogenesis, there is only limited knowledge about the associated muscular and molecular pathology. This study reports on a comprehensive workup of muscular pathology, including proteomic profiling and microscopic studies, performed on an 8-year-old girl with typical clinical presentation of EHLMRS, where exome analysis revealed two clinically relevant, compound-heterozygous variants in SPATA5. Proteomic profiling of a quadriceps biopsy showed the dysregulation of 82 proteins, out of which 15 were localized in the mitochondrion, while 19 were associated with diseases presenting with phenotypical overlap to EHLMRS. Histological staining of our patient’s muscle biopsy hints towards mitochondrial pathology, while the identification of dysregulated proteins attested to the vulnerability of the cell beyond the mitochondria. Through our study we provide insights into the molecular etiology of EHLMRS and provide further evidence for a muscle pathology associated with SPATA5 deficiency, including a pathological histochemical pattern accompanied by dysregulated protein expression.


2021 ◽  
Author(s):  
Paul-Christian Burda ◽  
Abhinay Ramaprasad ◽  
Emma Pietsch ◽  
Sabrina Bielfeld ◽  
Christoph Söhnchen ◽  
...  

For its replication within red blood cells, the malaria parasite is highly dependent on correctly regulated lipid metabolism. Enzymes involved in lipid metabolic processes are therefore potential drug targets. We here provide a functional analysis of the 20 putative phospholipases that are expressed by asexual blood stages of Plasmodium falciparum. We reveal a high level of redundancy among members of this group, but using conditional mislocalization and gene disruption techniques we show that the phosphoinositide-specific phospholipase C (PF3D7_1013500) has a previously unrecognized essential role in intracellular parasite maturation. In addition, we demonstrate that the patatin-like phospholipase PF3D7_1358000 localizes to the mitochondrion. Parasites lacking this enzyme display a severe growth phenotype and defects in mitochondrial morphogenesis and function leading to hypersensitivity towards proguanil and inhibitors of the mitochondrial electron transport chain including atovaquone. This demonstrates that regulated mitochondrial lipid homeostasis is necessary for mitochondrial function and coordinated division during parasite multiplication.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2845
Author(s):  
Yu-Jung Chang ◽  
Kuan-Wei Chen ◽  
Linyi Chen

Increased ROS proto-oncogene 1 (ROS1) expression has been implicated in the invasiveness of human oral squamous cell carcinoma (OSCC). The cellular distribution of ROS1 has long-been assumed at the plasma membrane. However, a previous work reported a differential cellular distribution of mutant ROS1 derived from chromosomal translocation, resulting in increased carcinogenesis. We thus hypothesized that cellular distribution of upregulated ROS1 in OSCC may correlate with invasiveness. We found that ROS1 can localize to mitochondria in the highly invasive OSCC and identified a mitochondria-targeting signal sequence in ROS1. We also demonstrated that ROS1 targeting to mitochondria is required for mitochondrial fission phenotype in the highly invasive OSCC cells. OSCC cells expressing high levels of ROS1 consumed more oxygen and had increased levels of cellular ATP levels. Our results also revealed that ROS1 regulates mitochondrial biogenesis and cellular metabolic plasticity. Together, these findings demonstrate that ROS1 targeting to mitochondria enhances OSCC invasion through regulating mitochondrial morphogenesis and cellular respiratory.


Author(s):  
Yu-Jung Chang ◽  
Kuan-Wei Chen ◽  
Linyi Chen

ABSTRACTIncreased ROS1 oncogene expression has been implicated in the invasiveness of human oral squamous cell carcinoma (OSCC). The cellular distribution of ROS1 has long been assumed at the plasma membrane. However, a previous work reported a differential cellular distribution of mutant ROS1 derived from chromosomal translocation, resulting in increased carcinogenesis. We thus hypothesized that cellular distribution of up-regulated ROS1 in OSCC may correlate with invasiveness. We found that ROS1 can localize to mitochondria in the highly invasive OSCC and identified a mitochondria-targeting signal sequence in ROS1. We also demonstrated that ROS1 targeting to mitochondria is required for mitochondrial fission phenotype in the highly invasive OSCC cells. OSCC cells expressing high levels of ROS1 consumed more oxygen and had increased levels of cellular ATP levels. Our results also revealed that ROS1 regulates mitochondrial biogenesis and cellular metabolic plasticity. Together, these findings demonstrate that ROS1 targeting to mitochondria enhances OSCC invasion through regulating mitochondrial morphogenesis and cellular respiratory.Summary StatementThis study discovers a new role for the ROS1 in mitochondrial fission and metabolic activities.


2019 ◽  
Vol 116 (10) ◽  
pp. 4250-4255 ◽  
Author(s):  
Thorsten B. Blum ◽  
Alexander Hahn ◽  
Thomas Meier ◽  
Karen M. Davies ◽  
Werner Kühlbrandt

Mitochondrial ATP synthases form dimers, which assemble into long ribbons at the rims of the inner membrane cristae. We reconstituted detergent-purified mitochondrial ATP synthase dimers from the green algaePolytomellasp. and the yeastYarrowia lipolyticainto liposomes and examined them by electron cryotomography. Tomographic volumes revealed that ATP synthase dimers from both species self-assemble into rows and bend the lipid bilayer locally. The dimer rows and the induced degree of membrane curvature closely resemble those in the inner membrane cristae. Monomers of mitochondrial ATP synthase reconstituted into liposomes do not bend membrane visibly and do not form rows. No specific lipids or proteins other than ATP synthase dimers are required for row formation and membrane remodelling. Long rows of ATP synthase dimers are a conserved feature of mitochondrial inner membranes. They are required for cristae formation and a main factor in mitochondrial morphogenesis.


2018 ◽  
Vol 218 (2) ◽  
pp. 559-579 ◽  
Author(s):  
Eric M. Sawyer ◽  
Pallavi R. Joshi ◽  
Victoria Jorgensen ◽  
Julius Yunus ◽  
Luke E. Berchowitz ◽  
...  

Cellular differentiation involves remodeling cellular architecture to transform one cell type to another. By investigating mitochondrial dynamics during meiotic differentiation in budding yeast, we sought to understand how organelle morphogenesis is developmentally controlled in a system where regulators of differentiation and organelle architecture are known, but the interface between them remains unexplored. We analyzed the regulation of mitochondrial detachment from the cell cortex, a known meiotic alteration to mitochondrial morphology. We found that mitochondrial detachment is enabled by the programmed destruction of the mitochondria–endoplasmic reticulum–cortex anchor (MECA), an organelle tether that bridges mitochondria and the plasma membrane. MECA regulation is governed by a meiotic transcription factor, Ndt80, which promotes the activation of a conserved kinase, Ime2. We further present evidence for Ime2-dependent phosphorylation and degradation of MECA in a temporally controlled manner. Our study defines a key mechanism that coordinates mitochondrial morphogenesis with the landmark events of meiosis and demonstrates that cells can developmentally regulate tethering to induce organelle remodeling.


2018 ◽  
Author(s):  
Eric M. Sawyer ◽  
Pallavi R. Joshi ◽  
Luke E. Berchowitz ◽  
Elçin Ünal

ABSTRACTCellular differentiation involves remodeling cellular architecture to transform one cell type to another. By investigating mitochondrial dynamics during meiotic differentiation in budding yeast, we sought to understand how organelle morphogenesis is developmentally controlled in a system where regulators of differentiation as well as organelle architecture are known, but the interface between them remains unexplored. We found that mitochondria abruptly detach from the cell cortex shortly before segregating into gametes. Mitochondrial detachment is enabled by the programmed destruction of the mitochondria-endoplasmic reticulum-cortex anchor (MECA), an organelle tether that forms contact sites between mitochondria and the plasma membrane. MECA regulation is governed by a meiotic transcription factor, Ndt80, which promotes the activation of a conserved kinase, Ime2. We found that MECA undergoes Ime2-dependent phosphorylation. Furthermore, Ime2 promotes MECA degradation in a temporally controlled manner. Our study defines a key mechanism that coordinates mitochondrial morphogenesis with the landmark events of meiosis and demonstrates that cells can developmentally regulate tethering to induce organelle remodeling.


2018 ◽  
Vol 32 (8) ◽  
pp. 4145-4157 ◽  
Author(s):  
Prabir Kumar Chakraborty ◽  
Brennah Murphy ◽  
Soumyajit Banerjee Mustafi ◽  
Anindya Dey ◽  
Xunhao Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document