cap carbonates
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ross N. Mitchell ◽  
Thomas M. Gernon ◽  
Grant M. Cox ◽  
Adam R. Nordsvan ◽  
Uwe Kirscher ◽  
...  

AbstractThe snowball Earth hypothesis—that a runaway ice-albedo feedback can cause global glaciation—seeks to explain low-latitude glacial deposits, as well as geological anomalies including the re-emergence of banded iron formation and “cap” carbonates. One of the most significant challenges to snowball Earth has been sedimentological cyclicity that has been taken to imply more climate dynamics than expected when the ocean is completely covered in ice. However, recent climate models suggest that as atmospheric CO2 accumulates, the snowball climate system becomes sensitive to orbital forcing. Here we show the presence of nearly all Milankovitch (orbital) cycles preserved in stratified banded iron formation deposited during the Sturtian snowball Earth. These results provide evidence for orbitally forced cyclicity of global ice sheets that resulted in periodic oxidation of ferrous iron. Orbital glacial advance and retreat cycles provide a simple mechanism to reconcile both the sedimentary dynamics and the enigmatic survival of multicellular life during snowball Earth.


2021 ◽  
Author(s):  
Adam Woods

<p>Fans and hemispheres comprised of crystals of calcium carbonate that directly grew on the seafloor are an intriguing feature of ancient carbonate environments. Calcium carbonate fans from across Earth history are typically made up of crystals of neomorphosed calcium carbonate that maintain an acicular morphology that is pseudohexagonal in cross – section with blunt terminations, pointing to an aragonite precursor. Crystal fans may occur as isolated bodies, or may form larger aggregates that are sometimes associated with microbialites, and form larger, reef – like structures. Some of the first occurrences of these features are within Neoarchean carbonates, when the crystals fans grew to impressive sizes, with lengths of over 1 m, formed layers of marine cement that reached thicknesses of up to several meters, are laterally continuous over 10s of km or more, and formed across carbonate platform settings from high energy subtidal settings to lower intertidal environments. Crystalline carbonate fans become less common and smaller (cm – scale) in the Paleoproterozoic, and nearly disappear prior to the Neoproterozoic, when they are associated with cap carbonates, and are primarily found in deeper water or outer shelf settings with low sedimentation rates. Seafloor cements are rare during the Phanerozoic, and are typically limited to small geographic areas with unusual sedimentary conditions, or are found in void spaces, where seawater chemistry was able to undergo modifications that would allow precipitation of cement fans. The exception is during the interval of time that followed the Permian – Triassic mass extinction, when small, cm – scale fans and hemispheres are found in Lower Triassic and lowermost Middle Triassic rocks. These cement fans occur in a variety of settings, although they are typically found in deeper water environments. Calcium carbonate fans that formed following the Permian – Triassic extinction may have microbial remains preserved within the cements, and are frequently found in close lateral or stratigraphic association with microbialites. However, some examples of post – extinction carbonate fans appear to have formed abiotically, without any microbial influence. Overall, crystalline calcium carbonate fans signal high levels of calcium carbonate supersaturation in ancient oceans. The initial decline in seafloor cement growth from the Neoarchean into the Proterozoic may have been the result of accelerated micrite production, while Neoproterozoic calcium carbonate fan growth is associated with glacial decay and retreat. Lower Triassic seafloor cements are likely the result of stratification and stagnation of the deep oceans that led to enhanced alkalinity. Calcium carbonate crystal fans are an intriguing feature of ancient carbonates that signal depositional systems and ocean chemistry that is much different from modern ocean, and provide a fascinating glimpse into non – uniformitarian sedimentary environments.</p>


Geology ◽  
2020 ◽  
Author(s):  
D.P. Le Heron ◽  
M.E. Busfield ◽  
C. Kettler

Dropstones of ice-rafted origin are typically cited as key cold-climate evidence in Cryogenian strata and, according to conventional wisdom, should not occur in postglacial, warm-water carbonates. In Namibia, the Chuos Formation (early Cryogenian) contains abundant dropstone-bearing intervals and striated clasts. It is capped by the Rasthof Formation, composed of laminites in its lower portion and microbial carbonates above. These laminites are locally found to contain pebble- and granule-sized lonestones in abundance. At the Omutirapo outcrop, meter-thick floatstone beds occur at the flanks of a Chuos paleovalley and are readily interpreted as mass-flow deposits. At Rasthof Farm, however, the clasts warp, deflect, and penetrate hundreds of carbonate laminations at both the outcrop and thin-section scale. We propose that these are dropstones, and we infer an ice-rafting mechanism. Evidence for vestigial glaciation concomitant with cap carbonate deposition thus merits a reappraisal of the depositional conditions of cap carbonates and their paleoclimatic significance.


2020 ◽  
Author(s):  
Daniel Le Heron ◽  
et al.

A three-dimensional model of a lonestone-bearing sample of the Rasthof Formation.<br>


2020 ◽  
Author(s):  
Daniel Le Heron ◽  
et al.

A three-dimensional model of a lonestone-bearing sample of the Rasthof Formation.<br>


2020 ◽  
Vol 347 ◽  
pp. 105843 ◽  
Author(s):  
Ruliang He ◽  
Ganqing Jiang ◽  
Wanyi Lu ◽  
Zunli Lu

2020 ◽  
Vol 39 (2) ◽  
pp. 279-296
Author(s):  
Elzio da Silva BARBOZA ◽  
Mauro Cesar GERALDES ◽  
Francisco Egídio Cavalcante PINHO ◽  
Carlos José FERNANDES ◽  
Carlos Humberto da SILVA

ABSTRACT - Paraguay Belt occupies the western portion of the Tocantins Province, surrounding the Southeast of the Amazonian Craton and the eastern border of the Rio Apa Block, suggesting continuity with Tucavaca Belt in Bolivia. The rocks of the Paraguay belt were initially deposited in a glaciomarine environment in sites proximal to the cratonic area and deeper marine under the influence of turbidite flows in distal sites (Cuiabá Group, Bauxi and Puga Formation). The cap carbonates, thick limestone and dolostone succession of the Araras Group and siltstones and diamictites of the Serra Azul Formation related to Glaskiers glaciation overlay these diamictites (related to Marinoan glaciation). On the top there are terrigenous sediments of the Alto Paraguay Group, represented by sandstones of Raizama and claystones of Diamantino formations, respectively. The belt can be divided into three distinct structural zones: The Internal Domain is comprised of turbidite and glaciogenic sequences. Glaciogenic rocks on the base and carbonaceous and terrigenous sediments on the top occur in the External Domain. Horizontal platformal cover on the Amazonian Craton rocks are characterized by open folds. Structural studies allowed characterization of continuous deformational phases: the main deformational phase generated regional inverse folds with a NE-SW trend and fan geometry. Several regionally widespread lode-type gold deposits related to four types of the quartz veins were identified: type 1 is in concordance to bedding, type 2 is parallel to Sn, type 3 is parallel to Sn+2, and vertical Type 4 (Au-rich) is orthogonal to Sn. Late deformation developed in the Cuiabá region, recorded the closure of the ocean and the invertion where the hydrothermal fluids are the responsible for the orebodies formation. Keywords: Paraguay Belt, Structural, Stratigraphy, Metalogenesis.


Geology ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 625-629 ◽  
Author(s):  
Alan D. Rooney ◽  
Chuan Yang ◽  
Daniel J. Condon ◽  
Maoyan Zhu ◽  
Francis A. Macdonald

Abstract The snowball Earth hypothesis predicts a strong hysteresis resulting in discrete multi-million-year glaciations followed by globally synchronous deglaciation. Here we present new U-Pb zircon and Re-Os sedimentary rock geochronology and Os isotope chemostratigraphy from post-Sturtian sequences in south China to test the synchroneity of deglaciation. High-precision chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb zircon dates refine the minimum age of deglaciation to 660.98 ± 0.74 Ma, which is ∼2 m.y. older than previously reported. We also provide a new maximum age constraint on the onset of the Marinoan glaciation of 657.17 ± 0.78 Ma. A global compilation of new Os isotope chemostratigraphy reveals a large and systematic trend to unradiogenic values over &lt;1 m of stratigraphy. Together, these data indicate that the Mn-carbonates in south China are not cap carbonates that formed as a response to post-snowball alkalinity, but are authigenic carbonates that formed millions of years after deglaciation. Sturtian cap carbonates tend to be absent or more condensed than their younger Marinoan counterparts. We suggest that this reflects a combination of enhanced accommodation space in early Cryogenian underfilled rift basins, stronger hysteresis, larger ice volume, and/or higher CO2 levels needed for deglaciation of the longer Sturtian glaciation. Further, our findings indicate that the apparent diachroneity of deglaciation can be explained readily as a consequence of stratigraphic condensation, itself due to the large post-Sturtian glacioeustatic transgressive sequence that outpaced shallow-water carbonate deposition.


Sign in / Sign up

Export Citation Format

Share Document