debranching enzymes
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 13 (1) ◽  
pp. 092-101
Author(s):  
Jay N Patel ◽  
Fenil A Parmar ◽  
Vivek N Upasani

Advancement in green chemistry has increased the use of microbial hydrolyases in various industries and chemical processes because of high catalytic efficiency, specificity, cost-effectiveness and eco-friendly nature. Bioconversion of tannins such as tannic acid is achieved by tannin acyl hydrolase, also known as tannase. It converts tannic acid into glucose and gallic acid by catalyzing the hydrolysis of ester and depside linkages in tannic acid. Tyrosinase is monophenol and O-diphenol oxidase a copper containing enzyme catalyzes the oxidation of tyrosine and generates different types of pigment such as melanin. Xylanases hydrolyze xylan into its constituent sugar with the help of several debranching enzymes. Microbial strains isolated from various sources were screened for these hydrolyases: Bhavnagar marine salterns (Bacillus megaterium BVUC_01 and Bacillus licheniformis BVUCh_02); Okhamadhi marine salterns Aspergillus versicolor; Spoiled/infected pomegranate (Xenoacremonium falcatum, two strains PGF1 and PGF4, Bacillus velezensisPGF2 and Candida freyschussiiPGF3. The other laboratory maintained bacterial cultures namely, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi were also used in this study. Asp. versicolor and Xen. falcatum (PGF1) produced all the three enzymes (tannase, tyrosinase and xylanase). B. licheniformis, B. megaterium, B. subtilis, B. velezensis produced tyrosinase and xylanase. Xen. falcatum (PGF4) and PGF2 produced tannase and xylanase. PGF3 produced tannase and tyrosinase. While, Bacillus megaterium and Salmonella typhi showed only tyrosinase activity. Candida freyschussii showed tannase activity. Staphylococcus aureus did not produce any of these enzymes.


Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 269-277
Author(s):  
A. A. Papakhin ◽  
Z. M. Borodina

The use of debranching enzymes in starch hydrolysis is a topical direction for obtaining new types of starch products with controlled properties and a potential for the further use. The aim of the work was to study an effect of pullulanase (EC3.2.1.41) on maize amylopectin starch in the native and gelatinized state. The objects of the research were maize amylopectin starch and enzyme preparation Promozyme D6 (Novozymes, Denmark). High-performance liquid chromatography (HPLC) was used to determine the carbohydrate composition of hydrolysates. The mass fraction of reducing substances (RS) was determined by the Lane and Eynon method. A rotational viscometer was used to measure dynamic viscosity of the starch hydrolysis products. It was found that analyzed starch in the native state showed low enzymatic sensitivity to the action of pullulanase with insignificant changes in viscosity, solubility and iodine binding capacity of the samples. Pullulanase showed the highest effect on gelatinized starch during the first eight hours of incubation. After eight hours, the maximum degree of starch hydrolysis by pullulanase at a dose of 10 units/g dry matter (DM) was 4.7% on DM basis, iodine binding capacity of the hydrolysate was D600 = 0.343 (in the control experiment D600 = 0.154), and the viscosity of the hydrolysate decreased from 7887 mPa · s to 4.3 mPa · s. Hydrolysates cooled to 8 °C and held for 20 hours along with hydrolysates that were not cooled showed high susceptibility to attack by glucoamilase (97–98%) at 60 °C and 24 hours of saccharification, which suggested the absence of their resistance to the action of glucoamilase in the conditions of the experiment. The use of pullulanase in dextrinization of the analyzed starch, which was gelatinized and partly hydrolyzed by α-amylase (RS6.1%), enabled obtaining hydrolysates with the mass fraction of reducing substances in a range of 10–24% on DM basis with the process duration of 2 to 24 hours and the enzyme dose of 2–10 units, which contained mainly maltotriose, maltohexose and maltoheptose with their total amount of 45–60% on DM basis. The results indicate a need for further research of the biocatalytic action of pullulanase to develop new methods for enzymatic modification of starch.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6770
Author(s):  
Samkelo Malgas ◽  
Mpho S. Mafa ◽  
Brian N. Mathibe ◽  
Brett I. Pletschke

Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1983
Author(s):  
Ahsan Irshad ◽  
Huijun Guo ◽  
Shoaib Ur Rehman ◽  
Xueqing Wang ◽  
Chaojie Wang ◽  
...  

Cereal crops have starch in their endosperm, which has provided calories to humans and livestock since the dawn of civilization to the present day. Starch is one of the important biological factors which is contributing to the yield of cereal crops. Starch is synthesized by different enzymes, but starch structure and amount are mainly determined by the activities of starch synthase enzymes (SS) with the involvement of starch branching enzymes (SBEs) and debranching enzymes (DBEs). Six classes of SSs are found in Arabidopsis and are designated as soluble SSI-V, and non-soluble granule bound starch synthase (GBSS). Soluble SSs are important for starch yield considering their role in starch biosynthesis in cereal crops, and the activities of these enzymes determine the structure of starch and the physical properties of starch granules. One of the unique characteristics of starch structure is elongated glucan chains within amylopectin, which is by SSs through interactions with other starch biosynthetic enzymes (SBEs and DBEs). Additionally, soluble SSs also have conserved domains with phosphorylation sites that may be involved in regulating starch metabolism and formation of heteromeric SS complexes. This review presents an overview of soluble SSs in cereal crops and includes their functional and structural characteristics in relation to starch synthesis.


Author(s):  
Weiwei Wang ◽  
Dawen Zheng ◽  
Zhenzhen Zhang ◽  
Qingyun Cao ◽  
Hui Ye ◽  
...  

This study was aimed to investigate the effect of xylan depolymerizing enzyme namely endo-xylanase (Xyn) combined with debranching enzymes namely arabinofuranosidase (Afd) and feruloyl esterase (FE) on digestion, growth performance and intestinal volatile fatty acid profile of piglets. The in vitro experiments were firstly conducted to examine the enzymological properties of Xyn, Afd and FE, the synergy among these enzymes, together with the effect of combination of these enzymes on digestion of piglet diet. The in vivo experiment was then implemented by allocating 270 35-d-old postweaning piglets into 3 treatment groups: control group, Xyn group and (Xyn+Afd+FE) group. Each group had 6 replicates (15 piglets/replicate). The results revealed a satisfying thermostability and pH stability of Xyn, Afd and FE. Combination of Xyn, Afd and FE had a superiority (P < 0.05) over Xyn alone and its combination with Afd or FE in promoting degradation of different bran fibers rich in arabinoxylan (Abx). Treatment with combination of Xyn, Afd and FE had advantages over Xyn alone to induce increasing trends (P < 0.10) of in vitro digestibility of dietary nutrients (dry matter, crude protein, crude ash and gross energy) and piglet growth performance (average daily gain, final body weight and feed efficiency), concurrent with a reduction (P < 0.05) of diarrhea rate and increases (P < 0.05) in cecal acetic acid, butyric acid and total volatile fatty acids concentrations as well as pH value of piglets. Collectively, combination of Xyn, Afd and FE was efficient in benefiting degradation of Abx in brans, as well as improving digestion, growth performance and intestinal volatile fatty acid profile of piglets.


Biochimie ◽  
2021 ◽  
Vol 186 ◽  
pp. 59-72
Author(s):  
Karoline E. Dittmer ◽  
Prajakta Pradhan ◽  
Quentin C. Tompkins ◽  
Andrew Brittingham ◽  
Wayne A. Wilson

2021 ◽  
pp. 107786
Author(s):  
Wei Xia ◽  
Kang Zhang ◽  
Lingqia Su ◽  
Jing Wu
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiawen Liu ◽  
Di Sun ◽  
Jingrong Zhu ◽  
Cong Liu ◽  
Weijie Liu

AbstractExtensive decoration of backbones is a major factor resulting in resistance of enzymatic conversion in hemicellulose and other branched polysaccharides. Employing debranching enzymes is the main strategy to overcome this kind of recalcitrance at present. A carbohydrate-binding module (CBM) is a contiguous amino acid sequence that can promote the binding of enzymes to various carbohydrates, thereby facilitating enzymatic hydrolysis. According to previous studies, CBMs can be classified into four types based on their preference in ligand type, where Type III and IV CBMs prefer to branched polysaccharides than the linear and thus are able to specifically enhance the hydrolysis of substrates containing side chains. With a role in dominating the hydrolysis of branched substrates, Type III and IV CBMs could represent a non-catalytic approach in overcoming side-chain recalcitrance.


Sign in / Sign up

Export Citation Format

Share Document