scholarly journals Combination of Xylan Depolymerizing and Debranching Enzymes Improves Digestion, Growth Performance and Intestinal Volatile Fatty Acid Profile of Piglets

Author(s):  
Weiwei Wang ◽  
Dawen Zheng ◽  
Zhenzhen Zhang ◽  
Qingyun Cao ◽  
Hui Ye ◽  
...  

This study was aimed to investigate the effect of xylan depolymerizing enzyme namely endo-xylanase (Xyn) combined with debranching enzymes namely arabinofuranosidase (Afd) and feruloyl esterase (FE) on digestion, growth performance and intestinal volatile fatty acid profile of piglets. The in vitro experiments were firstly conducted to examine the enzymological properties of Xyn, Afd and FE, the synergy among these enzymes, together with the effect of combination of these enzymes on digestion of piglet diet. The in vivo experiment was then implemented by allocating 270 35-d-old postweaning piglets into 3 treatment groups: control group, Xyn group and (Xyn+Afd+FE) group. Each group had 6 replicates (15 piglets/replicate). The results revealed a satisfying thermostability and pH stability of Xyn, Afd and FE. Combination of Xyn, Afd and FE had a superiority (P < 0.05) over Xyn alone and its combination with Afd or FE in promoting degradation of different bran fibers rich in arabinoxylan (Abx). Treatment with combination of Xyn, Afd and FE had advantages over Xyn alone to induce increasing trends (P < 0.10) of in vitro digestibility of dietary nutrients (dry matter, crude protein, crude ash and gross energy) and piglet growth performance (average daily gain, final body weight and feed efficiency), concurrent with a reduction (P < 0.05) of diarrhea rate and increases (P < 0.05) in cecal acetic acid, butyric acid and total volatile fatty acids concentrations as well as pH value of piglets. Collectively, combination of Xyn, Afd and FE was efficient in benefiting degradation of Abx in brans, as well as improving digestion, growth performance and intestinal volatile fatty acid profile of piglets.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1253
Author(s):  
Chae-Hyung Sun ◽  
Jae-Sung Lee ◽  
Jalil Ghassemi Nejad ◽  
Won-Seob Kim ◽  
Hong-Gu Lee

We evaluated the effects of a rumen-protected microencapsulated supplement from linseed oil (MO) on ruminal fluid, growth performance, meat quality, and fatty acid composition in Korean native steers. In an in vitro experiment, ruminal fluid was taken from two fistulated Holstein dairy cows. Different levels of MO (0%, 1%, 2%, 3%, and 4%) were added to the diet. In an in vivo experiment, eight steers (average body weight = 597.1 ± 50.26 kg; average age = 23.8 ± 0.12 months) were assigned to two dietary groups, no MO (control) and MO (3% MO supplementation on a DM basis), for 186 days. The in vitro study revealed that 3% MO is an optimal dose, as there were decreases in the neutral detergent fiber and acid detergent fiber digestibility at 48 h (p < 0.05). The in vivo study showed increases in the feed efficiency and average daily gain in the 3% MO group compared to the control group on days 1 to 90 (p < 0.05). Regarding meat quality, the shear force produced by the longissimus thoracis muscle in steers from the 3% MO group was lower than that produced by the control group (p < 0.05). Interestingly, in terms of the fatty acid profile, higher concentrations of C22:6n3 were demonstrated in the subcutaneous fat and higher concentrations of C18:3n3, C20:3n3, and C20:5n3 were found in the intramuscular fat from steers fed with 3% MO (p < 0.05). Our results indicate that supplementation with 3% MO supplements improves the growth performance and meat quality modulated by the omega-3 fatty acid content of meat in Korean native steers.


2020 ◽  
Vol 4 (1) ◽  
pp. 91-101
Author(s):  
Shirley Fredriksz ◽  
Lily Joris

The objective of the study was to determine in-vitro digestibility of complete ration biscuit using sago pith as adhesive substance. The experiment was arranged in Complete Randomized Design with 5 treatments and 5 replications. The treatments were P1 (50% mini elephant grass+ 20%  leucaena + 30% sago pith + 0% rice bran), P2 (50% mini elephant grass+ 20%  leucaena + 25% sago pith + 5% rice bran), P3 (50% mini elephant grass+ 20%  leucaena + 20% sago pith +10% rice bran ) and P4 (50% mini elephant grass+ 20%  leucaena + 15% sago pith + 15% rice bran). Variables measured were digestibility of dry (DM) and organic matter (OM), NH3 level, total volatile fatty acid (VFA), and rumen pH. The results show that the treatment has no significant effect on vitro digestibility of dry and organic matter. In vitro -digestibility is ranging from   90.7 – 91.4% and 87.5 – 88.4 % for DM and OM, respectively. In-vitro test on complete ration biscuit which consists of sago pith, rice bran, mini elephant grass and leucaena leucocephala has no significant  (P>0.05) on NH3 level, total volatile fatty acid and rumen pH. In conclusion, sago pith can be potentially used as adhesive substance in formulating complete ration biscuit.  


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2240
Author(s):  
Ahmed Saleh ◽  
Mohammed Alzawqari

The current study focused exclusively on evaluating the effects of replacing corn with olive cake meal (OCM) in the diet of broilers on their growth performance, abdominal fat, selected plasma parameters, and muscle fatty acid (FA) content. A total of 480 one-day-old male broiler chickens (Ross 308) were divided into four treatment groups with 12 replicates/treatment. The control group was fed the base diet, whereas the second to fourth groups were fed diets of corn with 5%, 10%, and 20% contents of OCM, respectively. Broilers fed with the 5% and 10% OCM diets showed better body weight (p = 0.04) and feed conversion ratio than the 20% OCM group (p < 0.048). Both nitrogen retention and ether extract digestibility were not improved by replaced corn with OCM. Replacing corn with OCM led to a decreased abdominal fat percentage (p = 0.023) compared with the control group. Birds in the OCM groups showed the lowest total cholesterol values (p = 0.038). The breast muscle (musculus pectoralis superficialis) content of oleic and linoleic, linolenic, and arachidonic acids was significantly high in birds fed with OCM diets. However, their palmitic acid level was significantly decreased. Vitamin E was increased by increasing the OCM level. Thus, we concluded that replacing corn with OCM, especially at a 10% level, is more effective than other replacement levels in improving growth performance, plasma lipid profile, and muscle FA content, as well as in causing a reduction in abdominal fat in broilers.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 662
Author(s):  
Sabrin Abdelrahman Morshedy ◽  
Ahmed M. Abdelmodather ◽  
Mohamed M. Basyony ◽  
Soliman A. Zahran ◽  
Mohamed A. Hassan

Vegetable oils are a source of natural antioxidants, including tocopherols, sterols, phenolic compounds, coenzymes, and polyunsaturated fatty acids that provide nutritional value, organoleptic properties, and significantly delay or prevent lipid oxidation. Eighty-four V-line rabbits at 5 weeks of age with an initial body weight (BW) of 535.60 ± 13.48 g were assigned randomly to four experimental groups (seven replicates in each group with three rabbits each). The first group served as a control and received 0.3 mL/kg BW of distilled water (CON), while the second and third groups received 0.3 mL/kg BW of rocket seed oil (RSO) and wheat germ oil (WGO), respectively. The fourth group received a mixture of oils consisting of 0.15 mL of RSO and 0.15 mL of WGO/kg BW (MOs). The experiment lasted 7 weeks. The study investigated the effects of RSO, WGO, and their mixture on growth performance, feed utilization, antioxidant status, and immune response of growing rabbits. The results indicated that the rabbits that were administered orally with RSO and WGO or their mixture had higher (p ≤ 0.05) final BW, weight gain, and average daily gain when compared to the control group. In addition, the feed conversion ratio improved significantly with RSO, WGO, and MOs treatments. Different oil treatments improved nutrient digestibility, nutritive value, and nitrogen balance. Moreover, the rabbits that received RSO, WGO, and their mixture had an improvement the meat fatty acid composition compared to the control rabbits. Oral administration of RSO, WGO, and their mixture significantly improved serum protein fractions, decreased blood urea nitrogen, and had a positive effect on serum total lipids, HDL-c, and LDL-c. Furthermore, the treatments of RSO, WGO, and MOs had a significant improvement in the antioxidative status and immune response.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1904
Author(s):  
Taoqi Shao ◽  
Joshua C. McCann ◽  
Daniel W. Shike

The objective was to investigate the effects of feeding late gestational beef cows supplements differing in fatty acid profile on steer progeny finishing phase growth performance, carcass characteristics, and relative mRNA expression of myogenic and adipogenic genes. Seventy Angus-cross steers (initial body weight [BW] 273 ± 34 kg) born from dams supplemented with either 155 g DM/d EnerGII (CON, rich in palmitic and oleic acids) or 80 g DM/d Strata + 80 g DM/d Prequel (PUFA, rich in linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid) for the last 77 ± 6 d prepartum were used. Longissimus muscle and subcutaneous adipose biopsies were collected to evaluate relative mRNA expression of genes related to myogenesis and adipogenesis. Steers were slaughtered at 423 ± 6 d of age. No treatment × time interaction or treatment effect (p ≥ 0.21) was detected for steer finishing phase BW, while steers from PUFA supplemented dams tended (p = 0.06) to have a greater gain to feed ratio (G:F). Neither carcass characteristics nor relative mRNA expression was different (p ≥ 0.11). In conclusion, late gestation PUFA supplementation tended to increase steer progeny finishing phase G:F, but had no effects on finishing phase BW, carcass characteristics, or relative mRNA expression during the finishing phase.


Sign in / Sign up

Export Citation Format

Share Document