radiative scattering
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Huihui Feng ◽  
Ying Ding ◽  
Bin Zou ◽  
Chuanfeng Zhao

The aerosol at the previous time (initial aerosol) and climate conditions control the next step annual variation of global air pollution through the complex aerosol-climate interaction. However, the individual influences remain unclear, leaving a great gap for understanding the mechanism of air pollution evolution and supporting the environment management. We estimate the annual variation using statistical methods and satellite observations at global scale from 2001 to 2016 Results show that significant variation of annual aerosol occurs over 13.6% of land areas, in which a perturbation of aerosol may cause 0.58 ± 0.45 times change in the next phase. Initial aerosol and climate influences contribute 48.4–51.6% of the total variation, respectively. Specifically, the influences of precipitation, air temperature and surface temperature represent 0.1, 18.3 and 33.2% of the total variation. Physically, the observed variation is strongly correlated with fine mode aerosols, radiative scattering and warm/hot summers in temperate and cold zones. The environmental management therefore should implement cause-oriented strategies for emission control or climatic adaption.


2020 ◽  
Author(s):  
Lijuan Zhang ◽  
Tzung-May Fu

<p>Precipitation over Southern China for the month of April, which is largely associated with mesoscale convective systems (MCSs), has declined significantly in recent decades. It is unclear how this decline in precipitation may be related to the concurrent increase in anthropogenic aerosols in the atmosphere over this region. Using observation analyses and model simulations, we showed that anthropogenic aerosols significantly reduced MCS occurrences by 21% to 32% over Southern China in April, leading to less and weaker rainfall. Half of this MCS occurrence reduction was due to the direct radiative scattering and the indirect enhancement of non-MCS liquid cloud reflectance by aerosols, which stabilized the regional atmosphere. The other half of the MCS occurrence reduction was due to the microphysical and dynamical responses of the MCS to aerosols. The model simulations showed that the higher levels of aerosols and the resulting increase in liquid cloud droplets both enhance the scattering of sunlight, cool the surface, and stabilize the lower atmosphere. As a result, the occurrence of strong convective systems is suppressed, leading to decreased rainfall in April over Southern China. Our results demonstrated the complex effects of aerosols on MCSs via impacts on both convective systems and non-convective cloud systems in the regional atmosphere.</p>


2016 ◽  
Author(s):  
Yinghui Lu ◽  
Zhiyuan Jiang ◽  
Kultegin Aydin ◽  
Johannes Verlinde ◽  
Eugene E. Clothiaux ◽  
...  

Abstract. The atmospheric science community has entered a period in which radiative scattering properties in the microwave of realistically constructed ice particles are necessary for making progress on a number of fronts. One front includes retrieval of ice-particle properties and signatures from ground-, airborne- and satellite-based radar and radiometer observations. Another front is evaluation of model microphysics by application of forward operators to their outputs and comparison to observations during case study periods. Yet a third front is data assimilation, where again forward operators are applied to databases of ice-particle scattering properties and the results compared to observations, with their differences leading to corrections of the model state. Over the past decade investigators have developed databases of ice-particle scattering properties in the microwave and made them openly available. Motivated by and complementing these earlier efforts, a database containing polarimetric single-scattering properties of various types of ice particles at millimeter to centimeter wavelengths is presented. While the database presented here contains only single-scattering properties of ice particles in a fixed orientation, ice-particle scattering properties are computed for many different directions of the radiation incident on them. These results are useful for understanding the dependence of ice-particle scattering properties on ice-particle orientation with respect to the incident radiation. For ice particles small compared to the wavelength, the number of incident directions of the radiation is sufficient to compute reasonable estimates of their (randomly) orientation-averaged scattering properties. This database is complementary to earlier ones in that it contains complete (polarimetric) scattering property information for each ice particle – 44 plates, 30 columns, 405 branched planar crystals, 660 aggregates, and 640 conical graupel – and direction of incident radiation but is limited to four frequencies (W-, Ka-, Ku- and X-bands), does not include temperature dependencies of the single-scattering properties and does not include scattering properties averaged over randomly oriented ice particles. Rules for constructing the morphologies of ice particles from one database to the next often differ; consequently, analyses that incorporate all of the different databases will contain the most variability, while illuminating important differences between them. Publication of this database is in support of future analyses of this nature and comes with the hope that doing so helps contribute to the development of a database standard for ice-particle scattering properties, like the NetCDF CF (Climate and Forecast) or NetCDF CF Radial metadata conventions.


2009 ◽  
Vol 2009 ◽  
pp. 1-5
Author(s):  
M. D. Yang ◽  
S. W. Wu ◽  
G. W. Shu ◽  
J. S. Wang ◽  
J. L. Shen ◽  
...  

We studied the optoelectronic properties of the InGaN/GaN multiple-quantum-well light emitting diodes (LEDs) and single-junction GaAs solar cells by introducing the luminescent Au nanoclusters. The electroluminescence intensity for InGaN/GaN LEDs increases after incorporation of the luminescent Au nanoclusters. An increase of 15.4% in energy conversion efficiency is obtained for the GaAs solar cells in which the luminescent Au nanoclusters have been incorporated. We suggest that the increased light coupling due to radiative scattering from nanoclusters is responsible for improving the performance of the LEDs and solar cells.


2004 ◽  
Vol 4 (1) ◽  
pp. 255-273 ◽  
Author(s):  
O. N. E. Tuinder ◽  
R. de Winter-Sorkina ◽  
P. J. H. Builtjes

Abstract. The radiative scattering by clouds leads to errors in the retrieval of column densities and concentration profiles of atmospheric trace gas species from satellites. Moreover, the presence of clouds changes the UV actinic flux and the photo-dissociation rates of various species significantly. The Global Ozone Monitoring Experiment (GOME) instrument on the ERS-2 satellite, principally designed to retrieve trace gases in the atmosphere, is also capable of detecting clouds. Four cloud fraction retrieval methods for GOME data that have been developed are discussed in this paper (the Initial Cloud Fitting Algorithm, the PMD Cloud Recognition Algorithm, the Optical Cloud Recognition Algorithm (an in-house version and the official implementation) and the Fast Retrieval Scheme for Clouds from the Oxygen A-band). Their results of cloud fraction retrieval are compared to each-other and also to synoptic surface observations. It is shown that all studied retrieval methods calculate an effective cloud fraction that is related to a cloud with a high optical thickness. Generally, we found ICFA to produce the lowest cloud fractions, followed by our in-house OCRA implementation, FRESCO, PC2K and finally the official OCRA implementation along four processed tracks (+2%, +10%, +15% and +25% compared to ICFA respectively). Synoptical surface observations gave the highest absolute cloud fraction when compared with individual PMD sub-pixels of roughly the same size.


Sign in / Sign up

Export Citation Format

Share Document