frequency observation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 4)

2021 ◽  
Vol 13 (12) ◽  
pp. 5819-5830
Author(s):  
Xuebo Li ◽  
Yongxiang Huang ◽  
Guohua Wang ◽  
Xiaojing Zheng

Abstract. Partially due to global climate change, sand and dust storms (SDSs) have occurred more and more frequently, yet a detailed measurement of SDS events at different heights is still lacking. Here we provide a high-frequency observation from the Qingtu Lake Observation Array (QLOA), China. The wind and dust information were measured simultaneously at different wall-normal heights during the SDS process. The datasets span the period from 17 March to 9 June 2016. The wind speed and direction are recorded by a sonic anemometer with a sampling frequency of 50 Hz, while particulate matter with a diameter of 10 µm or less (PM10) is sampled simultaneously by a dust monitor with a sampling frequency of 1 Hz. The wall-normal array had 11 sonic anemometers and monitors spaced logarithmically from z=0.9 to 30 m, where the spacing is about 2 m between the sonic anemometer and dust monitor at the same height. Based on its nonstationary feature, an SDS event can be divided into three stages, i.e., ascending, stabilizing and descending stages, in which the dynamic mechanism of the wind and dust fields might be different. This is preliminarily characterized by the classical Fourier power analysis. Temporal evolution of the scaling exponent from Fourier power analysis suggests a value slightly below the classical Kolmogorov value of -5/3 for the three-dimensional homogeneous and isotropic turbulence. During the stabilizing stage, the collected PM10 shows a very intermittent pattern, which can be further linked with the burst events in the turbulent atmospheric boundary layer. This dataset is valuable for a better understanding of SDS dynamics and is publicly available in a Zenodo repository at https://doi.org/10.5281/zenodo.5034196 (Li et al., 2021a).


2021 ◽  
Vol 5 (6) ◽  
pp. 5-9
Author(s):  
Mingze Zhang

In order to study the temporal and spatial variation characteristics of the regional ionosphere and the modeling accuracy, the experiment is based on the spherical harmonic function model, using the GPS, Glonass, and Galileo dual-frequency observation data from the 305th-334th day of the European CORS network in 2019 to establish a global ionospheric model. By analyzing and evaluating the accuracy of the global ionospheric puncture points, VTEC, and comparing code products, the test results showed that the GPS system has the most dense puncture electricity distribution, the Glonass system is the second, and the Galileo system is the weakest. The values of ionospheric VTEC calculated by GPS, Glonass and Galileo are slightly different, but in terms of trends, they are the same as those of ESA, JPL and UPC. GPS data has the highest accuracy in global ionospheric modeling. GPS, Glonass and Galileo have the same trend, but Glonass data is unstable and fluctuates greatly.


2021 ◽  
Author(s):  
Xuebo Li ◽  
Yongxiang Huang ◽  
Guohua Wang ◽  
Xiaojing Zheng

Abstract. Partially due to the global climate change, the sand and dust storms (SDS) occurred more and more frequently, yet a detailed measurement of the SDS event at different heights is still lacking. Here we provide a high frequency observation in the Qingtu Lake Observation Array (QLOA), China. The wind and dust information were measured simultaneously at different wall-normal heights during the SDS process. The datasets span the period from 17 March to 9 June 2016. The wind speed and direction are recorded by a sonic anemometer with a sampling frequency 50 Hz, while the particulate matter 10 (PM10) is sampled simultaneously by a dust monitor with a sampling frequency 1 Hz. The wall-normal array had 11 sonics and monitors spaced logarithmically from z = 0.9 to 30 m, where the spacing is about 2-meter between the sonic anemometer and dust monitor at the same height. Based on its non-stationary feature, the SDS event can be divided into three stages, i.e., ascending, stabilizing and descending stages, in which the dynamic mechanism of the wind and dust fields might be different. This is preliminarily characterized via the classical Fourier power analysis. Temporal evolution of the scaling exponent from Fourier power analysis suggests slightly below the classical Kolmogorov value of −5/3 for the three-dimensional homogeneous and isotropic turbulence. During the stabilizing stage, the collected PM10 shows a very intermittent pattern, which can be further linked with the burst events in the turbulent atmospheric boundary layer. This dataset is valuable for a better understanding the SDS dynamics, which has being publicly available at Zenodo through the DOI 10.5281/zenodo.5034196 (Li et al., 2021a).


2021 ◽  
Vol 39 (4) ◽  
pp. 613-625
Author(s):  
Geng Wang ◽  
Mingyu Wu ◽  
Guoqiang Wang ◽  
Sudong Xiao ◽  
Irina Zhelavskaya ◽  
...  

Abstract. We investigate the reflection of low-harmonic fast magnetosonic (MS) waves at the local two-ion cutoff frequency (fcutHe+). By comparing the wave signals of the two Van Allen Probes satellites, a distinct boundary where wave energies cannot penetrate inward are found in the time–frequency domain. The boundary is identified as the time series of local fcutHe+. For a certain frequency, there exists a spatial interface formed by fcutHe+, where the incident waves should be reflected. The waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly and then slow down in a period of several to tens of seconds before the reflection process complete. The cutoff reflection scenario can explain the intense outward waves observed by probe A. These results of MS reflection at fcutHe+ may help to predict the global distribution of MS waves and promote the understanding of wave–particle dynamics in the radiation belt.


Author(s):  
Gaochao Yang ◽  
Qing Wang ◽  
Shiyang Zhou ◽  
Bo Zhang ◽  
Xin Li

2021 ◽  
Author(s):  
Geng Wang ◽  
Mingyu Wu ◽  
Guoqiang Wang ◽  
Sudong Xiao ◽  
Irina Zhelavskaya ◽  
...  

Abstract. We investigate the reflection of low-harmonic fast magnetosonic (MS) waves at the local two-ion cutoff frequency (fcutHe+). By comparing the wave signals of the two Van Allen Probes, a distinct boundary where wave energies cannot penetrate inward are found in time-frequency domain. The boundary is identified as the time series of local fcutHe+. For a certain frequency, there exists a spatial interface formed by fcutHe+, where the incident waves should be reflected. The waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly, and being trapped in a period of several to tens of seconds before the reflection process complete. The cutoff reflection scenario can explain the intense outward waves observed by Probe-A. These results of MS reflection at fcutHe+ may help to predict the global distribution of MS waves and promote the understanding of wave-particle dynamics in the radiation belt.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1551
Author(s):  
Zihuai Guo ◽  
Yibin Yao ◽  
Jian Kong ◽  
Gang Chen ◽  
Chen Zhou ◽  
...  

Global navigation satellite system (GNSS) can provide dual-frequency observation data, which can be used to effectively calculate total electron content (TEC). Numerical studies have utilized GNSS-derived TEC to evaluate the accuracy of ionospheric empirical models, such as the International Reference Ionosphere model (IRI) and the NeQuick model. However, most studies have evaluated vertical TEC rather than slant TEC (STEC), which resulted in the introduction of projection error. Furthermore, since there are few GNSS observation stations available in the Antarctic region and most are concentrated in the Antarctic continent edge, it is difficult to evaluate modeling accuracy within the entire Antarctic range. Considering these problems, in this study, GNSS STEC was calculated using dual-frequency observation data from stations that almost covered the Antarctic continent. By comparison with GNSS STEC, the accuracy of IRI-2016 and NeQuick2 at different latitudes and different solar radiation was evaluated during 2016–2017. The numerical results showed the following. (1) Both IRI-2016 and NeQuick2 underestimated the STEC. Since IRI-2016 utilizes new models to represent the F2-peak height (hmF2) directly, the IRI-2016 STEC is closer to GNSS STEC than NeQuick2. This conclusion was also confirmed by the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) occultation data. (2) The differences in STEC of the two models are both normally distributed, and the NeQuick2 STEC is systematically biased as solar radiation increases. (3) The root mean square error (RMSE) of the IRI-2016 STEC is smaller than that of the NeQuick2 model, and the RMSE of the two modeling STEC increases with solar radiation intensity. Since IRI-2016 relies on new hmF2 models, it is more stable than NeQuick2.


2020 ◽  
Vol 498 (1) ◽  
pp. 1093-1100
Author(s):  
Pavan Kumar Vishwakarma ◽  
Jais Kumar

ABSTRACT Statistics of the magnetic field disturbances in supernova remnants (SNRs) can be accessed using the second-order correlation function of the synchrotron intensities. Here we measure the magnetic energy spectra in the supernova remnant Cassiopeia-A by two-point correlation of the synchrotron intensities, using a recently developed unbiased method. The measured magnetic energy spectra in the vicinity of supernova remnant shocks are found to be a 2/3 power law over the decade of range scales, showing the developed trans-Alfvénic magnetohydrodynamic turbulence. Our results are globally consistent with the theoretical prediction of trans-Alfvénic Mach number in developed magnetohydrodynamic turbulence and can be explained by amplification of the magnetic field in the vicinity of SNR shocks. The magnetic energy spectra predict SNR Cassiopeia-A to have an additional subshock in the radio frequency observation along with forward and reverse shocks, with a radial window of the amplified magnetic field of ∼ 0.115 pc near the shocks.


Sign in / Sign up

Export Citation Format

Share Document