scholarly journals Reflection of low-frequency fast magnetosonic waves at the local two-ion cutoff frequency: observation in the plasmasphere

2021 ◽  
Vol 39 (4) ◽  
pp. 613-625
Author(s):  
Geng Wang ◽  
Mingyu Wu ◽  
Guoqiang Wang ◽  
Sudong Xiao ◽  
Irina Zhelavskaya ◽  
...  

Abstract. We investigate the reflection of low-harmonic fast magnetosonic (MS) waves at the local two-ion cutoff frequency (fcutHe+). By comparing the wave signals of the two Van Allen Probes satellites, a distinct boundary where wave energies cannot penetrate inward are found in the time–frequency domain. The boundary is identified as the time series of local fcutHe+. For a certain frequency, there exists a spatial interface formed by fcutHe+, where the incident waves should be reflected. The waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly and then slow down in a period of several to tens of seconds before the reflection process complete. The cutoff reflection scenario can explain the intense outward waves observed by probe A. These results of MS reflection at fcutHe+ may help to predict the global distribution of MS waves and promote the understanding of wave–particle dynamics in the radiation belt.

2021 ◽  
Author(s):  
Geng Wang ◽  
Mingyu Wu ◽  
Guoqiang Wang ◽  
Sudong Xiao ◽  
Irina Zhelavskaya ◽  
...  

Abstract. We investigate the reflection of low-harmonic fast magnetosonic (MS) waves at the local two-ion cutoff frequency (fcutHe+). By comparing the wave signals of the two Van Allen Probes, a distinct boundary where wave energies cannot penetrate inward are found in time-frequency domain. The boundary is identified as the time series of local fcutHe+. For a certain frequency, there exists a spatial interface formed by fcutHe+, where the incident waves should be reflected. The waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly, and being trapped in a period of several to tens of seconds before the reflection process complete. The cutoff reflection scenario can explain the intense outward waves observed by Probe-A. These results of MS reflection at fcutHe+ may help to predict the global distribution of MS waves and promote the understanding of wave-particle dynamics in the radiation belt.


2020 ◽  
Author(s):  
Robert Rankin ◽  
Alexander Degeling

<p>Recent observations from the Van Allen Probes mission have established that Pc3-5 ultra-low-frequency (ULF) waves can energize ions and electrons via drift-resonance and drift-bounce resonance. The extent to which these waves contribute to the space weather of the belts is relatively poorly understood and requires sophisticated modelling and characterization of the dominant wave modes that arise in the development and recovery phase of geomagnetic storms. Despite more than four decades of observations and theoretical analysis of ULF waves, there is no framework for accurately assessing the global distribution of ULF waves and their influence on the ring current. <br>In this presentation, we describe a new global model of ULF waves that incorporates non-dipolar geomagnetic fields. The model is constrained using the GCPM of cold plasma density model and a specification of the ionosphere using the IRI and MSIS models. An algorithm is applied to adjust the initial plasma state to a quasi-static equilibrium that is then driven by a global convection electric field and ULF wave source. For specific observations by the Van Allen Probes and ARASE mission, the effect of these ULF waves on radiation belt ions and electrons is evaluated utilizing test-particle methodology and Liouville's theorem, which enables the phase space density to be followed and compared one-for-one with the satellite observations.  </p>


2016 ◽  
Vol 43 (3) ◽  
pp. 967-977 ◽  
Author(s):  
Zhonglei Gao ◽  
Zhenpeng Su ◽  
Hui Zhu ◽  
Fuliang Xiao ◽  
Huinan Zheng ◽  
...  

2007 ◽  
Vol 25 (3) ◽  
pp. 815-822 ◽  
Author(s):  
K. Kabin ◽  
R. Rankin ◽  
I. R. Mann ◽  
A. W. Degeling ◽  
R. Marchand

Abstract. In this paper we present results concerning periods and polarizations of cold plasma ultra-low frequency (ULF) guided Alfvén waves in a non-axisymmetric geomagnetic field. The background geomagnetic field is approximated by a compressed dipole for which we propose a simple description in terms of Euler potentials. This study is motivated by the problem of outer-radiation belt electron acceleration by ULF waves, for which the polarization of the wave is of paramount importance. We consider an approximation appropriate to decoupled Alfvénic waves and find that the polarization of the waves can change significantly with local time. Therefore, the ULF wave's contribution to the MeV electron energization process can be localized in space.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Jingang Zhan ◽  
Hongling Shi ◽  
Yong Wang ◽  
Yixin Yao

Ice sheet changes of the Antarctic are the result of interactions among the ocean, atmosphere, and ice sheet. Studying the ice sheet mass variations helps us to understand the possible reasons for these changes. We used 164 months of Gravity Recovery and Climate Experiment (GRACE) satellite time-varying solutions to study the principal components (PCs) of the Antarctic ice sheet mass change and their time-frequency variation. This assessment was based on complex principal component analysis (CPCA) and the wavelet amplitude-period spectrum (WAPS) method to study the PCs and their time-frequency information. The CPCA results revealed the PCs that affect the ice sheet balance, and the wavelet analysis exposed the time-frequency variation of the quasi-periodic signal in each component. The results show that the first PC, which has a linear term and low-frequency signals with periods greater than five years, dominates the variation trend of ice sheet in the Antarctic. The ratio of its variance to the total variance shows that the first PC explains 83.73% of the mass change in the ice sheet. Similar low-frequency signals are also found in the meridional wind at 700 hPa in the South Pacific and the sea surface temperature anomaly (SSTA) in the equatorial Pacific, with the correlation between the low-frequency periodic signal of SSTA in the equatorial Pacific and the first PC of the ice sheet mass change in Antarctica found to be 0.73. The phase signals in the mass change of West Antarctica indicate the upstream propagation of mass loss information over time from the ocean–ice interface to the southward upslope, which mainly reflects ocean-driven factors such as enhanced ice–ocean interaction and the intrusion of warm saline water into the cavities under ice shelves associated with ice sheets which sit on retrograde slopes. Meanwhile, the phase signals in the mass change of East Antarctica indicate the downstream propagation of mass increase information from the South Pole toward Dronning Maud Land, which mainly reflects atmospheric factors such as precipitation accumulation.


2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


2017 ◽  
Vol 122 (8) ◽  
pp. 8327-8339 ◽  
Author(s):  
Xiao-Chen Shen ◽  
Mary K. Hudson ◽  
Allison N. Jaynes ◽  
Quanqi Shi ◽  
Anmin Tian ◽  
...  

2021 ◽  
Author(s):  
Sem Vijverberg ◽  
Dim Coumou

<p>Heatwaves can have devastating impact on society and reliable early warnings at several weeks lead time are needed. Heatwaves are often associated with quasi-stationary Rossby waves, which interact with sea surface temperature (SST). Previous studies showed that north-Pacific SST can provide long-lead predictability for eastern U.S. temperature, moderated by an atmospheric Rossby wave. The exact mechanisms, however, are not well understood. Here we analyze Rossby waves associated with heatwaves in western and eastern US. Causal inference analyses reveal that both waves are characterized by positive ocean-atmosphere feedbacks at synoptic timescales, amplifying the waves. However, this positive feedback on short timescales is not the causal mechanism that leads to a long-lead SST signal. Only the eastern US shows a long-lead causal link from SSTs to the Rossby wave. We show that the long-lead SST signal derives from low-frequency PDO variability, providing the source of eastern US temperature predictability. We use this improved physical understanding to identify more reliable long-lead predictions. When, at the onset of summer, the Pacific is in a pronounced PDO phase, the SST signal is expected to persist throughout summer. These summers are characterized by a stronger ocean-boundary forcing, thereby more than doubling the eastern US temperature forecast skill, providing a temporary window of enhanced predictability.</p>


Sign in / Sign up

Export Citation Format

Share Document