scholarly journals High-frequency observation during sand and dust storms at the Qingtu Lake Observatory

2021 ◽  
Vol 13 (12) ◽  
pp. 5819-5830
Author(s):  
Xuebo Li ◽  
Yongxiang Huang ◽  
Guohua Wang ◽  
Xiaojing Zheng

Abstract. Partially due to global climate change, sand and dust storms (SDSs) have occurred more and more frequently, yet a detailed measurement of SDS events at different heights is still lacking. Here we provide a high-frequency observation from the Qingtu Lake Observation Array (QLOA), China. The wind and dust information were measured simultaneously at different wall-normal heights during the SDS process. The datasets span the period from 17 March to 9 June 2016. The wind speed and direction are recorded by a sonic anemometer with a sampling frequency of 50 Hz, while particulate matter with a diameter of 10 µm or less (PM10) is sampled simultaneously by a dust monitor with a sampling frequency of 1 Hz. The wall-normal array had 11 sonic anemometers and monitors spaced logarithmically from z=0.9 to 30 m, where the spacing is about 2 m between the sonic anemometer and dust monitor at the same height. Based on its nonstationary feature, an SDS event can be divided into three stages, i.e., ascending, stabilizing and descending stages, in which the dynamic mechanism of the wind and dust fields might be different. This is preliminarily characterized by the classical Fourier power analysis. Temporal evolution of the scaling exponent from Fourier power analysis suggests a value slightly below the classical Kolmogorov value of -5/3 for the three-dimensional homogeneous and isotropic turbulence. During the stabilizing stage, the collected PM10 shows a very intermittent pattern, which can be further linked with the burst events in the turbulent atmospheric boundary layer. This dataset is valuable for a better understanding of SDS dynamics and is publicly available in a Zenodo repository at https://doi.org/10.5281/zenodo.5034196 (Li et al., 2021a).

2021 ◽  
Author(s):  
Xuebo Li ◽  
Yongxiang Huang ◽  
Guohua Wang ◽  
Xiaojing Zheng

Abstract. Partially due to the global climate change, the sand and dust storms (SDS) occurred more and more frequently, yet a detailed measurement of the SDS event at different heights is still lacking. Here we provide a high frequency observation in the Qingtu Lake Observation Array (QLOA), China. The wind and dust information were measured simultaneously at different wall-normal heights during the SDS process. The datasets span the period from 17 March to 9 June 2016. The wind speed and direction are recorded by a sonic anemometer with a sampling frequency 50 Hz, while the particulate matter 10 (PM10) is sampled simultaneously by a dust monitor with a sampling frequency 1 Hz. The wall-normal array had 11 sonics and monitors spaced logarithmically from z = 0.9 to 30 m, where the spacing is about 2-meter between the sonic anemometer and dust monitor at the same height. Based on its non-stationary feature, the SDS event can be divided into three stages, i.e., ascending, stabilizing and descending stages, in which the dynamic mechanism of the wind and dust fields might be different. This is preliminarily characterized via the classical Fourier power analysis. Temporal evolution of the scaling exponent from Fourier power analysis suggests slightly below the classical Kolmogorov value of −5/3 for the three-dimensional homogeneous and isotropic turbulence. During the stabilizing stage, the collected PM10 shows a very intermittent pattern, which can be further linked with the burst events in the turbulent atmospheric boundary layer. This dataset is valuable for a better understanding the SDS dynamics, which has being publicly available at Zenodo through the DOI 10.5281/zenodo.5034196 (Li et al., 2021a).


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 837
Author(s):  
Jeonghoe Kim ◽  
Jung-Hoon Kim ◽  
Robert D. Sharman

The characteristics of low-level turbulence at Boseong, located on the southern coast of South Korea, were investigated in terms of eddy dissipation rate (EDR) using 1-year (2018) of wind data obtained from the Boseong Meteorological Observatory (BMO), a World Meteorological Organization testbed. At BMO, a 307 m tall tower is installed on which four high-frequency (20 Hz) sonic anemometers are mounted at 60, 140, and 300 m above ground level (AGL). In addition, a sonic anemometer at 2.5 m AGL is located to the south of the tower. EDRs are estimated from the wind measurements based on three different EDR estimation methods. The first two methods use the inertial dissipation method derived from Kolmogorov turbulence theory, and the third uses a maximum likelihood estimation assuming a von Kármán spectral model. Reasonable agreement was obtained between the three methods with various fluctuations, including diurnal variations for all seasons, while the EDR calculated from the third method displayed slightly higher EDR values than the other two methods. The result of the analysis showed that the mean (standard deviations) of logarithms of EDR had larger values as height decreased (increased), and the means were higher in the unstable planetary boundary layer (PBL) than in the stable PBL for this heterogeneous location adjacent to the coastlines. The probability density functions (PDFs) of the EDRs showed that the distribution was well-represented by a lognormal distribution in both the stable and unstable PBL, although the PDFs at the lowest level (2.5 m) deviated from those at other levels due to surface effects. Seasonal variations in the PDFs showed that there was less difference in the shape of the PDFs depending on atmospheric stability in the wintertime. Finally, we calculate the 1-yr statistics of the observed EDR, which will be used for future LLT forecast systems in Korea.


2017 ◽  
Vol 34 (5) ◽  
pp. 1183-1191 ◽  
Author(s):  
Ross T. Palomaki ◽  
Nathan T. Rose ◽  
Michael van den Bossche ◽  
Thomas J. Sherman ◽  
Stephan F. J. De Wekker

AbstractUnmanned aerial vehicles are increasingly used to study atmospheric structure and dynamics. While much emphasis has been on the development of fixed-wing unmanned aircraft for atmospheric investigations, the use of multirotor aircraft is relatively unexplored, especially for capturing atmospheric winds. The purpose of this article is to demonstrate the efficacy of estimating wind speed and direction with 1) a direct approach using a sonic anemometer mounted on top of a hexacopter and 2) an indirect approach using attitude data from a quadcopter. The data are collected by the multirotor aircraft hovering 10 m above ground adjacent to one or more sonic anemometers. Wind speed and direction show good agreement with sonic anemometer measurements in the initial experiments. Typical errors in wind speed and direction are smaller than 0.5 and 30°, respectively. Multirotor aircraft provide a promising alternative to traditional platforms for vertical profiling in the atmospheric boundary layer, especially in conditions where a tethered balloon system is typically deployed.


2016 ◽  
Vol 9 (9) ◽  
pp. 4375-4386 ◽  
Author(s):  
Guylaine Canut ◽  
Fleur Couvreux ◽  
Marie Lothon ◽  
Dominique Legain ◽  
Bruno Piguet ◽  
...  

Abstract. This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with different convective boundary-layer conditions, based on turbulent measurements from instrumented towers and aircraft.


2020 ◽  
Vol 39 (1) ◽  
Author(s):  
Shingo Sakai ◽  
Ruako Takatori ◽  
Mika Nomura ◽  
Kuniaki Uehara

Abstract Background Facial skin care (FSC) is an important routine for Japanese women. Hand motions during FSC physically affect psychological state. However, it is very difficult to evaluate hand motions during personal and complex FSC. The objective of this study was to find out objective and quantitative parameters for hand motions during facial skin care (FSC). Women who enjoy and soothe during FSC (Enjoyment group (E group), n = 20) or not (non-enjoyment group (NE group), n = 19) were recruited by an advance questionnaire. The same lotion, emulsion, and cream were provided to all subjects, and they used sequentially in the same way as the women’s daily FSC. The motion of the marker on the back side of the right middle finger during FSC was tracked by a motion capture system. The heart rate variability (HRV) was also measured before and after FSC for evaluating psychological effect. Results The averaged acceleration (Avg. ACC), approximate entropy (ApEn), and power law scaling exponent (Rest γ) of the cumulative duration of slow motion from the sequential data of acceleration were evaluated. Compared to the NE group, the E group showed a lower Avg. ACC when using emulsion (p = 0.005) and cream (p = 0.007), a lower ApEn when using emulsion (p = 0.003), and a lower Rest γ (p = 0.024) when using all items, suggesting that compared to the NE group, the E group had more tender and regular motion, and sustainable slow motions, especially in the use of emulsion. In the E group, the low/high-frequency component of HRV decreased significantly after FSC, suggesting suppression of sympathetic activity (p = 0.045). NE group did not. For all subjects, ApEn and Rest γ showed significantly positive correlation with the increase in the low/high-frequency component of HRV after FSC (p < 0.01). ApEn showed significantly negative correlation with the increase in the high-frequency component of HRV after FSC (p < 0.05). Avg. ACC did not show significant correlation with them. These results suggested that the behavior of FSC influences the autonomic nerve system. Conclusions ApEn and Rest γ are useful parameters for evaluating quality of hand motions during FSC.


2016 ◽  
Vol 20 (3) ◽  
pp. 975-985 ◽  
Author(s):  
Ren-Jing Huang ◽  
Ching-Hsiang Lai ◽  
Shin-Da Lee ◽  
Wei-Che Wang ◽  
Ling-Hui Tseng ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 221-229 ◽  
Author(s):  
M. Li ◽  
W. Babel ◽  
K. Tanaka ◽  
T. Foken

Abstract. For non-omnidirectional sonic anemometers like the Kaijo-Denki DAT 600 TR61A probe, it is shown that separate planar-fit rotations must be used for the undisturbed (open part of the sonic anemometer) and the disturbed sector. This increases the friction velocity while no effect on the scalar fluxes was found. In the disturbed sector, irregular values of − u′w′ < 0 were detected for low wind velocities. Up to a certain extent these results can be transferred to the CSAT3 sonic anemometer (Campbell Scientific Ltd). This study was done for data sets from the Naqu-BJ site on the Tibetan Plateau.


2018 ◽  
Vol 11 (1) ◽  
pp. 249-263 ◽  
Author(s):  
Matthias Mauder ◽  
Matthias J. Zeeman

Abstract. Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.


2008 ◽  
Vol 8 (6) ◽  
pp. 21129-21169 ◽  
Author(s):  
T. Holst ◽  
A. Arneth ◽  
S. Hayward ◽  
A. Ekberg ◽  
M. Mastepanov ◽  
...  

Abstract. In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs) measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC) technique based on a proton transfer reaction mass spectrometer (PTR-MS). The vegetation at the site was dominated by Sphagnum, Carex and Eriophorum spp. The performance of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O) at m37) with water vapour concentration measurements made using an adjacent humidity sensor, and from a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations. Standardised (20°C and 1000 μmol m−2 s−1 PAR) summer isoprene emission rates of 323 μg C m−2 (ground area) h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence when compared with emissions from temperate or (sub)tropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1 (ca. 100 μg C m−2 h-1) and measurements indicated some nocturnal deposition. The measurements reported here covered a period of 50 days (1 August to 19 September 2006), approximately one half of the growing season at the site, and allowed to investigate the effect of vegetation senescence on daily BVOC fluxes and on their temperature and light responses. Long-term measurements of BVOC are still lacking for nearly all ecosystems and only a very few studies about seasonal or even interannual variation of BVOC emissions have been published so far, particularly for northern ecosystems. The results presented here will be useful for testing process understanding obtained in laboratory studies and for model evaluation, improving our understanding of biogeochemical cycles in a region which is likely to be sensitive to climate change and currently undergoes rapid changes due to global warming.


Sign in / Sign up

Export Citation Format

Share Document