scholarly journals Broadband Modified Proximity Coupled Patch Antenna with Cavity-Backed Configuration

2021 ◽  
Vol 21 (1) ◽  
pp. 8-14
Author(s):  
Deok Kyu Kong ◽  
Jaesik Kim ◽  
Daewoong Woo ◽  
Young Joong Yoon

A modified proximity-coupled microstrip patch antenna with broad impedance bandwidth is proposed by incorporating proximity-coupled patch antenna into the rectangular open-ended microstrip feed line on a cavity structure. First we design a proximity-coupled microstrip antenna to have a wide bandwidth in the lower band centered at 7 GHz using a cavity-backed ground. To broaden the bandwidth of the antenna to the upper band, we then apply a rectangular open-ended microstrip feed line, adjusting the relative position to the cavity to generate an additional resonance close to 10 GHz. The combination of lower and upper band design results in a broadband antenna with dimensions of 30 mm × 30 mm × 9 mm (0.9λ<sub>0</sub> × 0.9λ<sub>0</sub> × 0.27λ<sub>0</sub>) is designed where λ<sub>0</sub> corresponds to the free space wavelength at a center frequency of 9 GHz. The measurement results verify the broad impedance bandwidth (VSWR ≤ 2) of the antenna at 77% (5.6–12.6 GHz) while the broadside gain is maintained between 6 dBi and 8 dBi within the operational broad bandwidth.

Author(s):  
Chandravilash Rai ◽  
Sanjai Singh ◽  
Ashutosh Kumar Singh ◽  
Ramesh Kumar Verma

Abstract A circularly polarized ring cylindrical dielectric resonator antenna (ring-CDRA) of wideband impedance bandwidth is presented in this article. The proposed ring CDRA consist of an inverted rectangular (tilted rectangular) shaped aperture and inverted L-shaped slotted microstrip feed line. The tilted rectangular shaped aperture and inverted L-shaped microstrip feed line generate two-hybrid mode HEM11δ and HEM12δ while ring CDRA and slotted microstrip feed line are used for the enhancement of impedance bandwidth. The proposed ring CDRA is resonating between 6.08 and 12.2 GHz with 66.95% (6120 MHz) impedance bandwidth. The axial ratio (AR) bandwidth of 6.99% (780 MHz) is obtained between 10.76 and 11.54 GHz with a minimum AR value of 0.2 dB at a frequency of 11 GHz. The proposed geometry of ring CDRA has been validated with measurement performed by VNA and anechoic chamber. The operating range of the proposed radiator is useful for different applications in X-band.


2015 ◽  
Vol 781 ◽  
pp. 24-27 ◽  
Author(s):  
Raghuraman Selvaraju ◽  
Muhammad Ramlee Kamarudin ◽  
Mohsen Khalily ◽  
Mohd Haizal Jamaluddin ◽  
Jamal Nasir

A Multi Input Multi Output (MIMO) Rectangular Dielectric Resonator Antenna (RDRA) for 1.8 GHz Long Term Evolution (LTE) applications is investigated and presented. The antenna consisting of two rectangular dielectric resonator elements, both resonators are fed by microstrip feed line is etched on FR4 substrate. The simulated impedance bandwidth for port1 and port2 is 26.38% (1.6176-2.1093 GHz) and 26.80% (1.6146-2.1143GHz) respectively for |S11| ≤ -6dB, which can operate on LTE band 1-4,9,10,35-37 and 39. The gain of the MIMO RDRA is 3.2 dBi and 3.1 dBi at 1.8 GHz for port 1and port 2, respectively. The S-parameters, isolation, gain, and MIMO performance such as correlation coefficient and diversity gain of the presented RDR Antenna have been studied.


Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip double patch antenna for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.7 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


2018 ◽  
Vol 7 (3.6) ◽  
pp. 45
Author(s):  
K M. Jyothsna ◽  
S Suganthi

This paper portrays the design of a compact square-shaped microstrip broadband antenna using ground slots. Polygon shaped slots are placed on the ground under the feed line for bandwidth improvement. Similarly, rectangular slots are placed on the square patch for gain enhancement. Effect of these slots on the performance of the antenna in terms of impedance bandwidth, gain and directivity are studied.  Results of simulation tests show that a ground slot with proper dimensions placed under the feed line can improve the impedance matching and hence increase the bandwidth without affecting much the performance of the antenna. This compact antenna of size 9.098 x 9.098 mm can be very useful for applications where size is a major constraint. Simple microstrip feed is used to feed the patch. The percentage bandwidth of this antenna is 75.57 %. 


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Chai-Eu Guan ◽  
Takafumi Fujimoto

This paper describes a compact patch antenna intended for medical body area network. The antenna is fed using a proximity coupling scheme to support the antenna that radiates in the free space and on the human body at the 2.45 GHz ISM band. The conductor plane is placed 2 mm or 0.0163λ0 (λ0 is free space wavelength at 2.45 GHz) below the antenna to reduce backward radiation to the human body. Separation distance must be kept above 2 mm, otherwise, gain of the proposed antenna decreases when antenna is situated on the human body. The L-shape feed line is introduced to overcome impedance mismatch caused by the compact structure. The coupling gap between the proposed antenna and the length of the L-shape feed line are optimized to generate dual resonances mode for wide impedance bandwidth. Simulation results show that specific absorption rate (SAR) of the proposed antenna with L-shape feed line is lower than conventional patch antenna with direct microstrip feed line. The proposed antenna achieves impedance bandwidth of 120 MHz (4.89%) at the center frequency of 2.45 GHz. The maximum gain in the broadside direction is 6.2 dBi in simulation and 5.09 dBi in measurement for antenna in the free space. Wide impedance bandwidth and radiation patterns insensitive to the presence of human body are achieved, which meets the requirement of IoT-based wearable sensor.


Author(s):  
Paulen Aulia Lutfia ◽  
Nurhayati Nurhayati ◽  
Samuel Prasad Jones Christydass

Umbrella Monopole Antenna (UMA) proposed in this paper for 5G application. We designed four models of UMA, i.e: UMA-A, UMA-B, UMA-C, and UMA-D. The antenna has a curvature in the patch as an umbrella shape with a feeding shape a microstrip feed line. Four variations of the patch antenna have been designed and get different performance in VSWR, surface current, and directivity. The proposed antenna has a wide bandwidth that operates 8 GHz – 30 GHz with VSWR <2 dB. The Increasing of directivity is reached for UMA-A, UMA-C, UMA-D, and UMA-B, i.e: 6.38 dBi, 7.97 dBi, 8,84dBi, and 9,15 dBi respectively at 24 GHz.  The maximum gain has been reached for UMA-B of 9.15. The lowest frequency that has a return loss of 10 dB has resulted for UMA-D in the frequency around 5 GHz. All of the UMA antennas can be applied for 5G mmwave applications at 24 GHz and 28 GHz.


Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip patch antenna with triple slot for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.4 GHz & 11 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


Sign in / Sign up

Export Citation Format

Share Document