scholarly journals Research on Stability of Gray Value of Excited-State Fluorescent Oil Film Based on Variable Light Vector Angle

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongjiang Qian ◽  
Xiucheng Dong ◽  
Zhengyu Zhang

In global skin-friction measurement of aircraft, the fluorescent oil film method can characterize the distribution of skin friction well. However, in an actual wind tunnel test, the wing of the aircraft will inevitably produce corresponding vibrations due to the influence of wind, which will change the relative position between fluorescent oil film and UV (ultraviolet) excitation light source (position fixed). This also directly affects gray value imaging of fluorescent oil films. Based on this, a mathematical model is established to judge the stability of the gray value of fluorescent oil film in this vibrational environment; then, the model can be solved to obtain the vibrational range constraint that enables the gray value of fluorescent oil film to be stabilized. In order to simplify the calculation process, the light vector angle is used to describe the constraint, which also makes the results more intuitive. Through experimental analysis and demonstration, the prediction accuracy of this model can reach 95.61%, which has certain practical engineering application significance.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tingrui Liu

Vibration control of the blade section of a wind turbine is investigated based on the sliding mode proportional-integral (SM-PI) method, i.e., sliding mode control (SMC) based on a PI controller. The structure is modeled as a 2D pretwisted blade section integrated with calculation of structural damping, which is subjected to flap/lead-lag vibrations of instability. To facilitate the hardware implementation of the control algorithm, the SM-PI method is applied to realize tracking for limited displacements and velocities. The SM-PI algorithm is a novel SMC algorithm based on the nominal model. It combines the effectiveness of the sliding mode algorithm for disturbance control and the stability of PID control for practical engineering application. The SM-PI design and stability analysis are discussed, with superiority and robustness and convergency control demonstrated. An experimental platform based on human-computer interaction using OPC technology is implemented, with position tracking for displacement and control input signal illustrated. The platform verifies the feasibility and effectiveness of the SM-PI algorithm in solving practical engineering problems, with online tuning of PI parameters realized by applying OPC technology.


2015 ◽  
Vol 744-746 ◽  
pp. 1194-1198
Author(s):  
Zhi Yun Wang ◽  
Xiao Long Ma ◽  
Lu Shen ◽  
Jing Lu

As a newly developed engineering structure, bucket foundation breakwater is adapted to soft soil. In this paper, the general-purpose finite element analysis package ABAQUS is employed to conduct three-dimensional numerical analyses on bucket foundation breakwater. Then earth pressure variation on bucket foundation is carried out under different loads of horizontal displacement. Through analysis it obtains the laws of the earth pressure on the meeting-wave side and the back-wave side of bucket foundation breakwater. This will provide the reference and the evidence of preliminary theory for the stability research and practical engineering application of bucket foundation breakwater.


1988 ◽  
Author(s):  
P. BANDYOPADHYAY ◽  
L. WEINSTEIN
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


Author(s):  
S. Li ◽  
J. Ruan ◽  
B. Meng ◽  
W. A. Jia ◽  
H. Y. Xie

A 2D electrohydraulic proportional directional valve is proposed, which integrates both direct and pilot operation of the valve. In this valve, the output magnetic force of the proportional solenoid is converted to rotate the spool through a thrust-torsion coupling and thus the pressure in the valve sensitive chamber is varied. The varied pressure exerted on the areas of the spool end produces a hydrostatic force to move the spool linearly, which will rotate the spool reversely. Theoretical analysis is carried to the proposed valve and the effects of the key geometric parameters on the dynamic characteristics of the 2D valve and stability are investigated. Experiments are also designed to access to the characteristics of the valve working under direct and pilot operation. The 2D electrohydraulic valve can work properly for both direct operation and pilot operation. The hysteresis and frequency response are measured and the results are within the acceptable range in practical engineering application required of the directional proportional valve.


2018 ◽  
Vol 70 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Jianmei Wang ◽  
Zhixiong Li ◽  
Sadoughi Mohammadkazem ◽  
Min Cai ◽  
Jianfeng Kang ◽  
...  

Purpose The stability characteristics of an oil film directly influence the safety and service life of mill oil-film bearings. However, very limited work has been done to address the stability characteristics of mill oil-film bearings. To this end, this paper aims to investigate the stability characteristics of mill oil-film bearings through theoretical and experimental analysis. Design/methodology/approach For the first time, a special designed experiment platform was developed to investigate the stability characteristics of mill oil-film bearings. In addition, a theoretical model of lubricating film of the tested bearings was established to analyze the oil-film stability. The theoretical results were compared with the experimental results. Findings The comparison results demonstrate that the critical influential factors on the bearing stability were the eccentricity ratio and the ratio of bearing length to diameter. The mill bearing was likely to be unstable under a small load and at a high rotational speed. Practical implications The paper includes implications for suitable operation conditions in practical use of mill oil-film bearings. Originality/value This paper fulfills an identified need to investigate oil-film stability of mill bearings for practical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Cheng Zhu ◽  
Yong Yuan ◽  
Zhongshun Chen ◽  
Zhiheng Liu ◽  
Chaofeng Yuan

The stability control of the rock surrounding recovery roadways guarantees the safety of the extraction of equipment. Roof falling and support crushing are prone to occur in double-key strata (DKS) faces in shallow seams during the extraction of equipment. Therefore, this paper focuses on the stability control of the rock surrounding DKS recovery roadways by combining field observations, theoretical analysis, and numerical simulations. First, pressure relief technology, which can effectively release the accumulated rock pressure in the roof, is introduced according to the periodic weighting characteristics of DKS roofs. A reasonable application scope and the applicable conditions for pressure relief technology are given. Considering the influence of the eroded area on the roof structure, two roof mechanics models of DKS are established. The calculation results show that the yield load of the support in the eroded area is low. A scheme for strengthening the support with individual hydraulic props is proposed, and then, the support design of the recovery roadway is improved based on the time effects of fracture development. The width of the recovery roadway and supporting parameters is redesigned according to engineering experience. Finally, constitutive models of the support and compacted rock mass in the gob are developed with FLAC3D software to simulate the failure characteristics of the surrounding rock during pressure relief and equipment extraction. The surrounding rock control effects of two support designs and three extraction schemes are comprehensively evaluated. The results show that the surrounding rock control effect of Scheme 1, which combines improved support design and the bidirectional extraction of equipment, is the best. Engineering application results show that Scheme 1 realizes the safe extraction of equipment. The research results can provide a reference and experience for use in the stability control of rock surrounding recovery roadways in shallow seams.


2002 ◽  
Vol 124 (3) ◽  
pp. 494-505 ◽  
Author(s):  
Kiyoshi Hatakenaka ◽  
Masato Tanaka ◽  
Kenji Suzuki

A new modified Reynolds equation is derived with centrifugal force acting on the hydrodynamic oil film being considered. This equation, together with a cavitation model, is used to obtain the steady-state equilibrium and calculate the rotordynamic coefficients of lightly loaded floating bush journal bearings operating at very high shaft speeds. The bush-to-shaft speed ratio and the linear cross-coupling spring coefficients of the inner oil film is found to decrease with the increase in shaft speed as the axial oil film rupture develops in the inner oil film. The present model can give reasonable explanation to the steady-state behavior and the stability behavior of the bearing observed in actual machines.


Sign in / Sign up

Export Citation Format

Share Document