scholarly journals Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Willow Coyote-Maestas ◽  
David Nedrud ◽  
Antonio Suma ◽  
Yungui He ◽  
Kenneth A. Matreyek ◽  
...  

AbstractProtein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.

2020 ◽  
Vol 295 (49) ◽  
pp. 16487-16496 ◽  
Author(s):  
Heather McClafferty ◽  
Hamish Runciman ◽  
Michael J. Shipston

S-Acylation, the reversible post-translational lipid modification of proteins, is an important mechanism to control the properties and function of ion channels and other polytopic transmembrane proteins. However, although increasing evidence reveals the role of diverse acyl protein transferases (zDHHC) in controlling ion channel S-acylation, the acyl protein thioesterases that control ion channel deacylation are very poorly defined. Here we show that ABHD17a (α/β-hydrolase domain-containing protein 17a) deacylates the stress-regulated exon domain of large conductance voltage- and calcium-activated potassium (BK) channels inhibiting channel activity independently of effects on channel surface expression. Importantly, ABHD17a deacylates BK channels in a site-specific manner because it has no effect on the S-acylated S0–S1 domain conserved in all BK channels that controls membrane trafficking and is deacylated by the acyl protein thioesterase Lypla1. Thus, distinct S-acylated domains in the same polytopic transmembrane protein can be regulated by different acyl protein thioesterases revealing mechanisms for generating both specificity and diversity for these important enzymes to control the properties and functions of ion channels.


2020 ◽  
Author(s):  
Willow Coyote-Maestas ◽  
David Nedrud ◽  
Antonio Suma ◽  
Yungui He ◽  
Kenneth A. Matreyek ◽  
...  

AbstractUnderstanding the biophysical mechanisms that govern the combination of protein domains into viable proteins is essential for advancing synthetic biology and biomedical engineering. Here, we use massively parallel genotype/phenotype assays to determine cell surface expression of over 300,000 variants of the inward rectifier K+ channel Kir2.1 recombined with hundreds of protein motifs. We use machine learning to derive a quantitative biophysical model and practical rules for domain recombination. Insertional fitness depends on nonlinear interactions between the biophysical properties of inserted motifs and the recipient protein, which adds a new dimension to the rational design of fusion proteins. Insertion maps reveal a generalizable hierarchical organization of Kir2.1 and several other ion channels that balances stability needed for folding and dynamics required for function.SummaryMassively parallel assays reveal interactions between donor domains and recipient proteins govern domain compatibility


Author(s):  
Ling-Ling Qian ◽  
Xiaojing Sun ◽  
Jingchun Yang ◽  
Xiao-Li Wang ◽  
Michael J. Ackerman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Gao ◽  
Chong Ma ◽  
Huqiang Wang ◽  
Haolin Zhong ◽  
Jiayin Zang ◽  
...  

AbstractInterestingly, some protein domains are intrinsically disordered (abbreviated as IDD), and the disorder degree of same domains may differ in different contexts. However, the evolutionary causes and biological significance of these phenomena are unclear. Here, we address these issues by genome-wide analyses of the evolutionary and functional features of IDDs in 1,870 species across the three superkingdoms. As the result, there is a significant positive correlation between the proportion of IDDs and organism complexity with some interesting exceptions. These phenomena may be due to the high disorder of clade-specific domains and the different disorder degrees of the domains shared in different clades. The functions of IDDs are clade-specific and the higher proportion of post-translational modification sites may contribute to their complex functions. Compared with metazoans, fungi have more IDDs with a consecutive disorder region but a low disorder ratio, which reflects their different functional requirements. As for disorder variation, it’s greater for domains among different proteins than those within the same proteins. Some clade-specific ‘no-variation’ or ‘high-variation’ domains are involved in clade-specific functions. In sum, intrinsic domain disorder is related to both the organism complexity and clade-specific functions. These results deepen the understanding of the evolution and function of IDDs.


2009 ◽  
Vol 181 (4S) ◽  
pp. 506-506
Author(s):  
Christian Gratzke ◽  
Philipp Weinhold ◽  
Oliver Reich ◽  
Christian G Stief ◽  
Karl-Erik Andersson ◽  
...  

2021 ◽  
Author(s):  
Sean Thomas ◽  
Kathryn Wierenga ◽  
James Pestka ◽  
Andrew Olive

Alveolar macrophages (AMs) are tissue resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. While the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function. Here, we describe the development of a new model, fetal liver-derived alveolar-like macrophages (FLAMs), which maintains cellular morphologies, expression profiles, and functional mechanisms similar to murine AMs. FLAMs combine treatment with two key cytokines for AM maintenance, GM-CSF and TGFβ. We leveraged the long-term stability of FLAMs to develop functional genetic tools using CRISPR-Cas9-mediated gene editing. Targeted editing confirmed the role of AM-specific gene Marco and the IL-1 receptor Il1r1 in modulating the AM response to crystalline silica. Furthermore, a genome-wide knockout library using FLAMs identified novel genes required for surface expression of the AM marker Siglec-F, most notably those related to the peroxisome. Taken together, our results suggest that FLAMs are a stable, self-replicating model of AM function that enables previously impossible global genetic approaches to define the underlying mechanisms of AM maintenance and function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Molly Javier Uyeda ◽  
Robert A. Freeborn ◽  
Brandon Cieniewicz ◽  
Rosa Romano ◽  
Ping (Pauline) Chen ◽  
...  

Type 1 regulatory T (Tr1) cells are subset of peripherally induced antigen-specific regulatory T cells. IL-10 signaling has been shown to be indispensable for polarization and function of Tr1 cells. However, the transcriptional machinery underlying human Tr1 cell differentiation and function is not yet elucidated. To this end, we performed RNA sequencing on ex vivo human CD49b+LAG3+ Tr1 cells. We identified the transcription factor, BHLHE40, to be highly expressed in Tr1 cells. Even though Tr1 cells characteristically produce high levels of IL-10, we found that BHLHE40 represses IL-10 and increases IFN-γ secretion in naïve CD4+ T cells. Through CRISPR/Cas9-mediated knockout, we determined that IL10 significantly increased in the sgBHLHE40-edited cells and BHLHE40 is dispensable for naïve CD4+ T cells to differentiate into Tr1 cells in vitro. Interestingly, BHLHE40 overexpression induces the surface expression of CD49b and LAG3, co-expressed surface molecules attributed to Tr1 cells, but promotes IFN-γ production. Our findings uncover a novel mechanism whereby BHLHE40 acts as a regulator of IL-10 and IFN-γ in human CD4+ T cells.


Sign in / Sign up

Export Citation Format

Share Document