plant membranes
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 10)

H-INDEX

20
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3947
Author(s):  
Agnieszka Urbanowska ◽  
Małgorzata Kabsch-Korbutowicz

Due to the rising water deficit in agriculture, digestate is increasingly being considered not only as an alternative fertiliser but also as a potential source of water. The use of recycled water for crop irrigation requires that it be treated in such a way that contaminants from the fermented biomass are not returned to the environment. Membrane processes can provide promising results in this regard. This study seeks to achieve membrane filtration using flat ceramic membranes for effective digestate liquid fraction treatment from a municipal waste biogas plant. Membranes of 1, 5, 15, and 50 kDa, and 0.14 and 0.45 µm are examined. The results obtained show that the application of a sedimentation process, as a preliminary step in the purification of the digestate, allows for a significant reduction in the content of contaminants in the solution. By analysing the effectiveness of the liquid fraction of the digestate purification in the sedimentation-membrane filtration process using flat ceramic membranes, it can be stated that all the membranes tested can be applied in the digestate purification. With an increase in the cut-off value, a deterioration in the quality of the digestate can be observed. The use of the sedimentation process before the membrane process not only improves the final quality of the digestate but also reduces the intensity of membrane fouling.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 430
Author(s):  
Michael Dean Wales ◽  
Eminet Gebremichael ◽  
Xiao Wang ◽  
Elisabeth Perea ◽  
Palitha Jayaweera ◽  
...  

Polybenzimidazole (PBI) hollow fiber membranes were used to treat flue gas desulfurization (FGD) wastewater (WW) from a coal fired power plant. Membranes were tested using both single salt solutions and real FGD WW. The PBI membranes showed >99% rejection for single salt solutions of NaCl, MgCl2, CaSO4, and CaCl2 at approximately 2000 PPM (parts per million). The membranes also showed >97% rejection for FGD WW concentrations ranging from 6900 to 14,400 PPM total dissolved solids (TDS). The pH of the FGD WW was adjusted between 3.97–8.20, and there was an optimal pH between 5.31 and 7.80 where %rejection reached a maximum of >99%. The membranes were able to operate stably up to 50 °C, nearly doubling the water flux as compared to room temperature, and while maintaining >98% salt rejection.


2021 ◽  
Author(s):  
Laura Carmona-Salazar ◽  
Rebecca E Cahoon ◽  
Jaime Gasca-Pineda ◽  
Ariadna González-Solís ◽  
Rosario Vera-Estrella ◽  
...  

Abstract Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.


2021 ◽  
Vol 11 ◽  
Author(s):  
Igor Pottosin ◽  
Miguel Olivas-Aguirre ◽  
Oxana Dobrovinskaya ◽  
Isaac Zepeda-Jazo ◽  
Sergey Shabala

This work critically discusses the direct and indirect effects of natural polyamines and their catabolites such as reactive oxygen species and γ-aminobutyric acid on the activity of key plant ion-transporting proteins such as plasma membrane H+ and Ca2+ ATPases and K+-selective and cation channels in the plasma membrane and tonoplast, in the context of their involvement in stress responses. Docking analysis predicts a distinct binding for putrescine and longer polyamines within the pore of the vacuolar TPC1/SV channel, one of the key determinants of the cell ionic homeostasis and signaling under stress conditions, and an additional site for spermine, which overlaps with the cytosolic regulatory Ca2+-binding site. Several unresolved problems are summarized, including the correct estimates of the subcellular levels of polyamines and their catabolites, their unexplored effects on nucleotide-gated and glutamate receptor channels of cell membranes and Ca2+-permeable and K+-selective channels in the membranes of plant mitochondria and chloroplasts, and pleiotropic mechanisms of polyamines’ action on H+ and Ca2+ pumps.


Author(s):  
Lin Xi ◽  
Waltraud X. Schulze ◽  
Xu Na Wu
Keyword(s):  

2020 ◽  
Vol 78 (4) ◽  
pp. 401-414
Author(s):  
Emilia Reszczyńska ◽  
Agnieszka Hanaka

Abstract The paper focuses on the selected plant lipid issues. Classification, nomenclature, and abundance of fatty acids was discussed. Then, classification, composition, role, and organization of lipids were displayed. The involvement of lipids in xantophyll cycle and glycerolipids synthesis (as the most abundant of all lipid classes) were also discussed. Moreover, in order to better understand the biomembranes remodeling, the model (artificial) membranes, mimicking the naturally occurring membranes are employed and the survey on their composition and application in different kind of research was performed. High level of lipids remodeling in the plant membranes under different environmental conditions, e.g., nutrient deficiency, temperature stress, salinity or drought was proved. The key advantage of lipid research was the conclusion that lipids could serve as the markers of plant physiological condition and the detailed knowledge on lipids chemistry will allow to modify their composition for industrial needs.


2019 ◽  
Vol 20 (17) ◽  
pp. 4264 ◽  
Author(s):  
Qi Guo ◽  
Lei Liu ◽  
Bronwyn J. Barkla

Salinity is one of the most decisive environmental factors threatening the productivity of crop plants. Understanding the mechanisms of plant salt tolerance is critical to be able to maintain or improve crop yield under these adverse environmental conditions. Plant membranes act as biological barriers, protecting the contents of cells and organelles from biotic and abiotic stress, including salt stress. Alterations in membrane lipids in response to salinity have been observed in a number of plant species including both halophytes and glycophytes. Changes in membrane lipids can directly affect the properties of membrane proteins and activity of signaling molecules, adjusting the fluidity and permeability of membranes, and activating signal transduction pathways. In this review, we compile evidence on the salt stress responses of the major membrane lipids from different plant tissues, varieties, and species. The role of membrane lipids as signaling molecules in response to salinity is also discussed. Advances in mass spectrometry (MS)-based techniques have largely expanded our knowledge of salt-induced changes in lipids, however only a handful studies have investigated the underlying mechanisms of membrane lipidome regulation. This review provides a comprehensive overview of the recent works that have been carried out on lipid remodeling of plant membranes under salt treatment. Challenges and future perspectives in understanding the mechanisms of salt-induced changes to lipid metabolisms are proposed.


Nature Plants ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. 913-914
Author(s):  
Adiilah Mamode Cassim ◽  
Sébastien Mongrand
Keyword(s):  

2019 ◽  
Vol 175 ◽  
pp. 384-391 ◽  
Author(s):  
Magali Deleu ◽  
Estelle Deboever ◽  
Mehmet Nail Nasir ◽  
Jean-Marc Crowet ◽  
Manuel Dauchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document