scholarly journals Can coseismic static stress changes sustain postseismic degassing?

Geology ◽  
2021 ◽  
Author(s):  
Marco Bonini

Earthquakes can trigger increased degassing in hydrogeological systems. Many of these systems return to preseismic conditions after months, but sometimes postseismic degassing lasts for years. The factors controlling such long-lasting degassing are poorly known. I explored the potential role of diverse triggering mechanisms (i.e., dynamic and static stress changes, volumetric strain) for three large earthquakes that induced postseismic degassing (the Wenchuan [China], Maule [Chile], and Gorkha [Nepal] earthquakes). The lessons from this study suggest that hydrogeological systems can respond to earthquakes in various ways, and different causal mechanisms can play a role. Persistent increased CO2 flux from hot springs has been documented after the Gorkha earthquake. These hot springs had their feeder systems dominantly unclamped, suggesting that sufficiently large normal stress changes may sustain late postseismic degassing. The results of this study are twofold: (1) they show a spatial correlation between unclamping stress and increased gas flow, and (2) they provide an explanation for protracted increased degassing.

2021 ◽  
Vol 4 (2) ◽  
pp. 33-41
Author(s):  
Murat Utkucu ◽  
Hatice Durmuş

It has been globally documented over different tectonic environments that Coulomb static stress changes caused by a mainshock can promote or demote stresses along the neighboring faults and thus triggers or delays following seismicity. In the present study Coulomb stress changes of the earthquakes in the Lake Van area are calculated using available data and the likely source faults. The calculated stress change maps demonstrate that the large earthquakes in the Lake Area are mostly stressed by the preceding earthquakes, suggesting earthquake rupture interactions. It is further suggested that Coulomb stress maps could be used for constraining the likely locations of the future large earthquakes and in the earthquake hazard mitigation studies.


2020 ◽  
Author(s):  
Marco Bonini ◽  
Daniele Maestrelli

<p>Various types of fluid expulsion features occur often at fold-and-thrust belts and subduction zones. The seepage features originate from the discharge and extrusion to the topographic surface of fluids, gases and possibly solid material, which are sourced from in-depth reservoirs. Earthquakes can occasionally trigger the eruption or increased activity of mud volcanoes and other seepage systems. The role of static and dynamic stress changes in the triggering will vary depending on the position of the seepage features with respect to the earthquake source fault. When the seepage system is controlled by faults that rupture and generate earthquakes, the role of static stress changes is likely to be influential. Subduction zones have the highest seismic potential on Earth, so large subduction earthquakes can stress massively the fault-controlled feeder systems of seepage features located above subduction thrusts. The potential role of coseismic static stress loading on fluid expulsion systems has been evaluated for accretionary and erosional subduction margins. The most significant effects occur in the epicentral area where subduction earthquakes can produce coseismic normal stress changes exceeding 20-40 bar, although these are generally restricted to relatively small regions. The magnitude of such stress changes may exceed the tensile strength of many rock anisotropies and increase crustal permeability by dilating fault-controlled conduits channeling fluids upwards. Also in fold-and-thrust belts seepage features may be associated with seismogenic faults. For instance, rupture of the Chihshang Fault (Taiwan) in 2003 produced the Mw6.8 Chengkung earthquake, which unclamped by 3 bar the feeder system of the nearby mud volcanoes that erupted shortly after the earthquake. A similar setting is also inferred for the seismogenic Pede-Apennine thrust system in northern Italy, which is also structurally controlling a number of mud volcanoes located on its hangingwall.</p><p>Seepage features can be often trigged off by dynamic stress changes created by earthquake faults located in the intermediate- to far-field. Peak dynamic stresses related to historical and recent earthquakes that produced a response of seepage systems in the Northern Apennines fold-and-thrust belt (Italy) are calculated through PGV (measured or evaluated through GMPEs). We document response of seepage systems to some historical and recent earthquakes. Some methane vents and springs showed paroxysmal activity that was influenced by peak dynamic stress of 0.3-0.4 bar, while mud volcanoes apparently showed lower sensitivity, being influenced by dynamic stresses with amplitude ranging between 0.5 and 3.5 bar. Recently, 17 mud volcanoes erupted shortly after the main seismic events of the 2016 Central Italy seismic sequence (Mwmax6.5), showing a clear correlation with peak dynamic stresses of the order of 2-4 bar (static stress changes are instead negligible or negative).</p><p>These results collectively suggest that seepage features may respond in different ways to dynamic and static stresses depending on earthquake magnitude and epicentral distances, and that they may show different sensitivity to stress changes. Dynamic stresses are likely to exert the dominant control on the triggering, even though static stress changes can also significantly influence seepage features in the near-field.</p>


Solid Earth ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 857-882 ◽  
Author(s):  
Lluís Saló ◽  
Tànit Frontera ◽  
Xavier Goula ◽  
Luis G. Pujades ◽  
Alberto Ledesma

Abstract. On 24 September 2013, an Ml 3.6 earthquake struck in the Gulf of Valencia (Spain) near the Mediterranean coast of Castelló, roughly 1 week after gas injections conducted in the area to develop underground gas storage had been halted. The event, felt by the nearby population, led to a sequence build-up of felt events which reached a maximum of Ml 4.3 on 2 October.Here, we study the role of static stress transfer as an earthquake-triggering mechanism during the main phase of the sequence, as expressed by the eight felt events. By means of the Coulomb failure function, cumulative static stress changes are quantified on fault planes derived from focal mechanism solutions (which act as both source and receiver faults) and on the previously mapped structures in the area (acting only as stress receivers in our modeling). Results suggest that static stress transfer played a destabilizing role and point towards an SE-dipping structure underlying the reservoir (or various with analogous geometry) that was most likely activated during the sequence. One of the previously mapped faults could be geometrically compatible, yet our study supports deeper sources. Based on this approach, the influence of the main events in the occurrence of future and potentially damaging earthquakes in the area would not be significant.


Author(s):  
Iman Mehdipour ◽  
Gabriel Falzone ◽  
Dale Prentice ◽  
Narayanan Neithalath ◽  
Dante Simonetti ◽  
...  

Optimizing the spatial distribution of contacting gas and the gas processing conditions enhances CO2 mineralization reactions and material properties of carbonate-cementitious monoliths.


2019 ◽  
Vol 15 (S356) ◽  
pp. 170-170
Author(s):  
Jari Kotilainen

AbstractWe present first results from our study of the host galaxies and environments of quasars in Galaxy And Mass Assembly (GAMA), a multiwavelength photometric and spectroscopic survey for ∼300,000 galaxies over ∼300 deg2, to a limiting magnitude of r ∼ 20 mag. We use a GAIA-selected sample of ∼350 quasars at z < 0.3 in GAMA. For all the quasars, we determine all surrounding GAMA galaxies and measure their star formation (SF) rate and SF history, and the host galaxy morphology and group membership of the quasars. As a comparison sample of inactive galaxies, we use 1000 subsets of galaxies in GAMA, matched in redshift and galaxy stellar mass to the quasars. We find that quasar activity does not depend on the large-scale environment (cluster/group/void), although quasars tend to prefer satellite location in their environment. Compared to inactive galaxies, quasars are preferentially hosted in bulge-dominated galaxies and have higher SF rates, both overall and averaged over the last 10 and 100 Myr. Quasars also have shorter median SF timescales, shorter median time since the last SF burst, and higher metallicity than inactive galaxies. We discuss these results in terms of triggering mechanisms of the quasar activity and the role of quasars in galaxy evolution.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yoshihisa Iio ◽  
Satoshi Matsumoto ◽  
Yusuke Yamashita ◽  
Shin’ichi Sakai ◽  
Kazuhide Tomisaka ◽  
...  

AbstractAfter a large earthquake, many small earthquakes, called aftershocks, ensue. Additional large earthquakes typically do not occur, despite the fact that the large static stress near the edges of the fault is expected to trigger further large earthquakes at these locations. Here we analyse ~10,000 highly accurate focal mechanism solutions of aftershocks of the 2016 Mw 6.2 Central Tottori earthquake in Japan. We determine the location of the horizontal edges of the mainshock fault relative to the aftershock hypocentres, with an accuracy of approximately 200 m. We find that aftershocks rarely occur near the horizontal edges and extensions of the fault. We propose that the mainshock rupture was arrested within areas characterised by substantial stress relaxation prior to the main earthquake. This stress relaxation along fault edges could explain why mainshocks are rarely followed by further large earthquakes.


2003 ◽  
Vol 40 (11) ◽  
pp. 1611-1642 ◽  
Author(s):  
Donald R Lowe ◽  
Deena Braunstein

Slightly alkaline hot springs and geysers in Yellowstone National Park exhibit distinctive assemblages of high-temperature (>73 °C) siliceous sinter reflecting local hydrodynamic conditions. The main depositional zones include subaqueous pool and channel bottoms and intermittently wetted subaerial splash, surge, and overflow areas. Subaqueous deposits include particulate siliceous sediment and dendritic and microbial silica framework. Silica framework forms thin, porous, microbe-rich films coating subaqueous surfaces. Spicules with intervening narrow crevices dominate in splash zones. Surge and overflow deposits include pool and channel rims, columns, and knobs. In thin section, subaerial sinter is composed of (i) dark brown, nearly opaque laminated sinter deposited on surfaces that evaporate to dryness; (ii) clear translucent silica deposited subaqueously through precipitation driven by supersaturation; (iii) heterogeneous silica representing silica-encrusted microbial filaments and detritus; and (iv) sinter debris. Brownish laminations form the framework of most sinter deposited in surge and overflow zones. Pits and cavities are common architectural features of subaerial sinter and show concave-upward pseudo-cross-laminations and micro-unconformities developed through migration. Marked birefringence of silica deposited on surfaces that evaporate to dryness is probably a strain effect. Repeated wetting and evaporation, often to dryness, and capillary effects control the deposition, morphology, and microstructure of most high-temperature sinter outside of the fully subaqueous zone. Microbial filaments are abundant on and within high-temperature sinter but do not provide the main controls on morphology or structuring except in biofilms developed on subaqueous surfaces. Millimetre-scale lamination cyclicity in much high-temperature sinter represents annual layering and regular seasonal fluctuations in silica sedimentation.


2004 ◽  
Vol 41 (4) ◽  
pp. 481
Author(s):  
Kazue Tazaki ◽  
Islam ABM Rafiqul ◽  
Kaori Nagai ◽  
Takayuki Kurihara

2006 ◽  
Vol 96 (5) ◽  
pp. 911-924 ◽  
Author(s):  
E. Papadimitriou ◽  
V. Karakostas ◽  
M. Tranos ◽  
B. Ranguelov ◽  
D. Gospodinov

Sign in / Sign up

Export Citation Format

Share Document