Effects of w/b ratio, fly ash, limestone calcined clay, seawater and sea-sand on workability, mechanical properties, drying shrinkage behavior and micro-structural characteristics of concrete

2022 ◽  
Vol 321 ◽  
pp. 126333
Author(s):  
Jun Liu ◽  
Ran An ◽  
Zhilu Jiang ◽  
Hesong Jin ◽  
Jihua Zhu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6692
Author(s):  
Xianhui Zhao ◽  
Haoyu Wang ◽  
Linlin Jiang ◽  
Lingchao Meng ◽  
Boyu Zhou ◽  
...  

The long-term property development of fly ash (FA)-based geopolymer (FA−GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA−GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA−GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA−GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS−FA−GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N−A−S−H) gel and calcium silicate hydration (C−S−H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.


2020 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Matthew S. Sullivan ◽  
Mi G. Chorzepa ◽  
Stephan A. Durham

Ternary blends of cementitious materials are investigated. A cement replacement level of 45% is used for all ternary mixtures consisting of 15% metakaolin and 30% slag replacements. Three metakaolin and two blast furnace slag, referred to as ‘slag’ for short, products commercially available are used to compare performance in ternary blends. A mixture with a 45% fly ash replacement is included to serve as a benchmark for performance. The control mixture contains 422 kg of cement per cubic meter of concrete, and a water-to-cementitious material ratio of 0.43 is used for all mixtures with varying dosages of superplasticizer to retain workability. Mixtures are tested for mechanical properties, durability, and volumetric stability. Mechanical properties include compression, split-cylinder tension, modulus of rupture, and dynamic Young’s modulus. Durability measures are comprised of rapid chloride-ion penetrability, sulfate resistance, and alkali–silica reactivity. Finally, the measure of dimensional stability is assessed by conducting drying shrinkage and coefficient of thermal expansion tests. Results indicate that ternary mixtures including metakaolin perform similarly to the control with respect to mechanical strength. It is concluded that ternary blends perform significantly better than both control and fly ash benchmark in tests measuring durability. Furthermore, shrinkage is reduced while the coefficients of thermal expansion are slightly higher than control and the benchmark.


2011 ◽  
Vol 243-249 ◽  
pp. 6880-6886 ◽  
Author(s):  
Yu Chen ◽  
Ying Li Gao

FA-FGD mortar and concrete were manufactured and tested the main performances. With WFA-FGD taking 80~85% of the total composite binder by mass, mortar used in buildings was provided with good workability, enough mechanical properties specified for masonry in China, low drying shrinkage and strong sulfate corrosion, which was suitable for plastering or coating inside and outside walls. With LFA-FGD more than 30% in proportion, middle-strength concrete showed satisfactory workability with no segregation, no bleeding and low slump loss, stable strength development and low brittleness, about 60% of the domestic standard limit of wear mass loss in the specified test, good impermeability as well as excellent cracking resistance.


2012 ◽  
Vol 626 ◽  
pp. 404-410 ◽  
Author(s):  
Muhammad Hafiz Ahmad ◽  
Hanizam Awang

This paper investigates the effect of steel fibre and alkaline-resistance glass fibre lightweight foamed concrete with fly ash inclusion towards mechanical and durability properties. The lightweight foamed concrete (LFC) with a density of 1000 kg/m3with constant water sand ratio of 1: 1:5 and water cement ratio of 0.45 was cast and tested. Steel and alkaline-resistance glass fibres were used as additives and 30% of cement was replaced by fly ash. Detail experiments were setup to study the behaviour and reaction of additives which is expected to give different results on mechanical and durability properties of LFC. Compared to AR-glass fibre, steel fibre has greater contribution in terms of mechanical properties. SFLFC resulted as the most effective approach for compressive, flexural, tensile split and water absorption with strength 6.13 N/mm2, 1.96 N/mm2, 1.52 N/mm2and lowest water absorption at 6.5% respectively. On the other hand, AR-glass fibre is better in controlling drying shrinkage which leads to controlling the cracking at early age. Fly ash does not change the mechanical properties and durability due to unprocessed stage to its finer forms.


2012 ◽  
Vol 450-451 ◽  
pp. 162-167
Author(s):  
Bao Ju Liu ◽  
You Jun Xie

At steam curing and moist curing conditions, the mechanical properties of concrete with different fineness and different proportions ultrafine fly ash-slag composite were studied. The experimental results indicated that the addition of ultrafine fly ash-slag composite had improved the long term mechanical properties of steam-cured concrete. The concrete with ultrafine fly ash-slag composite has lower drying shrinkage and creep compared to that of control concrete.


Sign in / Sign up

Export Citation Format

Share Document