scholarly journals Sensitivity analysis of heating a typical UK dwelling and implications for retrofit design

2021 ◽  
Vol 2042 (1) ◽  
pp. 012148
Author(s):  
Kate Simpson ◽  
Peter Childs ◽  
Jennifer Whyte

Abstract The aim of this research is to quantify the impact of heating set point on space heating energy demand for a typical UK dwelling. Retrofit includes fabric energy efficiency improvements. Energy performance certificates (EPCs) inform the householder of typical savings per measure, but this has previously been found to inaccurately estimate space heating energy demand, leading to errors in 'typical savings' presented to householders. The most sensitive inputs have been found to be temperature set point, followed by fabric efficiency. The BREDEM methodology assumes a temperature of 21°C for nine hours a day, rather than ~16°C and ~20°C found in research. The methods used to inform this study are local sensitivity analysis of the domestic energy model, based on a typical dwelling example with calibrated inputs. This is done using an open calibrated Python model, based on BREDEM. The impact of heating patterns on space heating energy demand are modelled pre retrofit; according to differing heating set points, following wall and loft fabric upgrade and full fabric upgrade. The BREDEM heating set point assumptions lead to space heating energy demand predicted ~50-100 kWh/m2/yr higher than real heating set points. Implications for retrofit design and EPCs are discussed.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1226
Author(s):  
Beatriz Fraga-De Cal ◽  
Antonio Garrido-Marijuan ◽  
Olaia Eguiarte ◽  
Beñat Arregi ◽  
Ander Romero-Amorrortu ◽  
...  

Prefabricated solutions incorporating thermal insulation are increasingly adopted as an energy conservation measure for building renovation. The InnoWEE European project developed three technologies from Construction and Demolition Waste (CDW) materials through a manufacturing process that supports the circular economy strategy of the European Union. Two of them consisted of geopolymer panels incorporated into an External Thermal Insulation Composite System (ETICS) and a ventilated façade. This study evaluates their thermal performance by means of monitoring data from three pilot case studies in Greece, Italy, and Romania, and calibrated building simulation models enabling the reliable prediction of energy savings in different climates and use scenarios. Results showed a reduction in energy demand for all demo buildings, with annual energy savings up to 25% after placing the novel insulation solutions. However, savings are highly dependent on weather conditions since the panels affect cooling and heating loads differently. Finally, a parametric assessment is performed to assess the impact of insulation thickness through an energy performance prediction and a cash flow analysis.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


2020 ◽  
Vol 197 ◽  
pp. 02012 ◽  
Author(s):  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Mamak P. Tootkaboni ◽  
Vincenzo Corrado

The EN ISO 52016-1:2018 technical standard has introduced a new simplified dynamic method for the calculation of the building energy need for heating and cooling. This new procedure combines a low amount of input data required, as for the previous quasi-steady and dynamic simplified methods of the withdrawn EN ISO 13790 standard, with an increased accuracy, which would reduce the gap with detailed dynamic methods. This work is part of a broader research activity aimed at investigating the new simplified dynamic model and highlighting its strengths and weaknesses, in terms of accuracy and robustness. Specifically, the work addresses the parameters that have a great influence on the final results and the effects of uncertainties in input data. To this purpose both standard and tailored energy performance assessments have been applied, in particular in the first one a continuous operation period of the space heating system was supposed, and in the second one an intermittent operation system was chosen. A sensitivity analysis was also carried out to quantify the variation of the heating and cooling loads with the set-point temperature, the windows physical properties, the heat capacity and the thermal transmission properties of opaque components, as well as the occupancy related input parameters, such as the internal heat gains and the ventilation flow rate. The analysis was applied to a multi-unit residential building located in Rome and built in the first half of the 20th century. The results outline absolute relevance of the set point temperatures. The significance of occupant behaviour and the importance of the correct definition of the component thermal properties is also pointed out through the comparison between the standard and tailored assessments.


2012 ◽  
Vol 47 ◽  
pp. 506-514 ◽  
Author(s):  
M. Kavgic ◽  
A. Summerfield ◽  
D. Mumovic ◽  
Z.M. Stevanovic ◽  
V. Turanjanin ◽  
...  

Buildings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 189 ◽  
Author(s):  
Javanroodi ◽  
M.Nik

Urbanization trends have changed the morphology of cities in the past decades. Complex urban areas with wide variations in built density, layout typology, and architectural form have resulted in more complicated microclimate conditions. Microclimate conditions affect the energy performance of buildings and bioclimatic design strategies as well as a high number of engineering applications. However, commercial energy simulation engines that utilize widely-available mesoscale weather data tend to underestimate these impacts. These weather files, which represent typical weather conditions at a location, are mostly based on long-term metrological observations and fail to consider extreme conditions in their calculation. This paper aims to evaluate the impacts of hourly microclimate data in typical and extreme climate conditions on the energy performance of an office building in two different urban areas. Results showed that the urban morphology can reduce the wind speed by 27% and amplify air temperature by more than 14%. Using microclimate data, the calculated outside surface temperature, operating temperature and total energy demand of buildings were notably different to those obtained using typical regional climate model (RCM)–climate data or available weather files (Typical Meteorological Year or TMY), i.e., by 61%, 7%, and 21%, respectively. The difference in the hourly peak demand during extreme weather conditions was around 13%. The impact of urban density and the final height of buildings on the results are discussed at the end of the paper.


2013 ◽  
Vol 330 ◽  
pp. 911-915 ◽  
Author(s):  
Vladimír Geletka ◽  
Anna Sedláková

The quality of most buildings may be affected during the initial phase of architectural design. It is therefore to optimize input parameters, which significantly influence energy efficiency. In principle it is possible to speak of a deterministic approach, which consider the input parameters to be fixed or a stochastic approach, which takes a wider set of input parameters into account. A single-storey house is evaluated in terms of energy performance in the initial phase of building design, where input parameters are changed in order to determine a correlation coefficient. The methodology is based on a sensitivity analysis (SA) and MonteCarlo simulation based on a stochastic random selection. Regression (RA) were written to express the impact architectural design has on energy performance. Feedback from the regression model estimates annual heating demand of single storey house.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7656
Author(s):  
Athanasios Tzempelikos ◽  
Seungjae Lee

While it is well-known that cool roofs can efficiently reduce cooling demand in buildings, their overall energy performance in mixed and cold climates has been a topic of debate. This paper presents a comprehensive simulation study to evaluate the combined impact of roof reflectivity, insulation level, and construction type (adhered vs attached) on annual energy demand and energy costs in the United States, for different buildings and climate zones. EnergyPlus was used to model three building types (retail, office, and school buildings) for the 16 most climate-representative locations in the US using typical reflectivity and insulation values. The results show that (i) roof reflectivity is equally important to roof insulation in warm climates; (ii) for low-rise offices and schools, the benefits of reflective roofs vs dark-colored roofs are clear for all US climatic zones, with higher savings in warm climates; (iii) for big-box-retail buildings, reflective roofs perform better except for cold climate zones 7–8; (iv) dark-colored, mechanically attached roofs achieve slightly better performance than reflective roofs in mixed and cold climates. Decision makers should consider building type, climatic conditions, roof insulation levels, and durability performance, along with roof reflectivity, when assessing the overall potential benefits of cool roofs.


2020 ◽  
Vol 10 (3) ◽  
pp. 893 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce ◽  
...  

In the line of pursuing better energy efficiency in human activities that would result in a more sustainable utilization of resources, the building sector plays a relevant role, being responsible for almost 40% of both energy consumption and the release of pollutant substances in the atmosphere. For this purpose, techniques aimed at improving the energy performances of buildings’ envelopes are of paramount importance. Among them, green roofs are becoming increasingly popular due to their capability of reducing the (electric) energy needs for (summer) climatization of buildings, hence also positively affecting the indoor comfort levels for the occupants. Clearly, reliable tools for the modelling of these envelope components are needed, requiring the availability of suitable field data. Starting with the results of a case study designed to estimate how the adoption of green roofs on a Sicilian building could positively affect its energy performance, this paper shows the impact of this technology on indoor comfort and energy consumption, as well as on the reduction of direct and indirect CO2 emissions related to the climatization of the building. Specifically, the ceiling surface temperatures of some rooms located underneath six different types of green roofs were monitored. Subsequently, the obtained data were used as input for one of the most widely used simulation models, i.e., EnergyPlus, to evaluate the indoor comfort levels and the achievable energy demand savings of the building involved. From these field analyses, green roofs were shown to contribute to the mitigation of the indoor air temperatures, thus producing an improvement of the comfort conditions, especially in summer conditions, despite some worsening during transition periods seeming to arise.


Sign in / Sign up

Export Citation Format

Share Document