scholarly journals Accelerometry to study fine-scale activity of invasive Burmese pythons (Python bivittatus) in the wild

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicholas M. Whitney ◽  
Connor F. White ◽  
Brian J. Smith ◽  
Michael S. Cherkiss ◽  
Frank J. Mazzotti ◽  
...  

Abstract Background The establishment of Burmese pythons (Python bivittatus) in Everglades National Park, Florida, USA, has been connected to a > 90% decline in the mesomammal population in the park and is a major threat to native reptile and bird populations. Efforts to control this population are underway, but are hampered by a lack of information about fine-scale activity cycles and ecology of these cryptic animals in the wild. We aimed to establish a technique for monitoring the activity of Burmese pythons in the wild using acceleration data loggers (ADLs), while attempting to identify any behavioral patterns that could be used to help manage this invasive species in the Greater Everglades and South Florida. Results We obtained continuous acceleration and temperature data from four wild snakes over periods of 19 to 95 days (mean 54 ± 33 days). Snakes spent 86% of their time at rest and 14% of their time active, including transiting between locations. All snakes showed at least one period of continuous transiting lasting 10 h or more, with one animal transiting continuously for a period of 58.5 h. Acceleration data logger-derived transiting bout duration was significantly correlated with the distance snakes traveled per hour for two snakes that also carried GPS loggers. Snakes were most active in midday or early-night depending on individual and time of year, but all snakes were least likely to be active in the early mornings (0400–0700 h local time). Very little movement took place at temperatures below 14 °C or above 24 °C, with most movement taking place between 15° and 20 °C. One animal showed a highly unusual rolling event that may be indicative of a predation attempt, but this could not be confirmed. Conclusions Fine-scale activity and some behaviors were apparent from ADL data, making ADLs a potentially valuable, unbiased tool for monitoring large-bodied snakes in the wild. Snakes spent the majority of their time resting, but also moved continuously for several hours at a time during bouts of transiting. Results suggest that individuals may shift their diel activity pattern based on season. Understanding seasonal differences in activity levels can improve the accuracy of population estimates, help detect range expansion, and improve managers’ ability to find and capture individuals.

2007 ◽  
Vol 20 (4) ◽  
pp. 299-305 ◽  
Author(s):  
Nicholas M. Whitney ◽  
Yannis P. Papastamatiou ◽  
Kim N. Holland ◽  
Christopher G. Lowe

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rachel A. Skubel ◽  
Kenady Wilson ◽  
Yannis P. Papastamatiou ◽  
Hannah J. Verkamp ◽  
James A. Sulikowski ◽  
...  

AbstractA growing number of studies are using accelerometers to examine activity level patterns in aquatic animals. However, given the amount of data generated from accelerometers, most of these studies use loggers that archive acceleration data, thus requiring physical recovery of the loggers or acoustic transmission from within a receiver array to obtain the data. These limitations have restricted the duration of tracking (ranging from hours to days) and/or type of species studied (e.g., relatively sessile species or those returning to predictable areas). To address these logistical challenges, we present and test a satellite-transmitted metric for the remote monitoring of changes in activity, measured via a pop-off satellite archival tag (PSAT) with an integrated accelerometer. Along with depth, temperature, and irradiance for geolocation, the PSAT transmits activity data as a time-series (ATS) with a user-programmable resolution. ATS is a count of high-activity events, relative to overall activity/mobility during a summary period. An algorithm is used to identify the high-activity events from accelerometer data and reports the data as a count per time-series interval. Summary statistics describing the data used to identify high-activity events accompany the activity time-series. In this study, we first tested the ATS activity metric through simulating PSAT output from accelerometer data logger archives, comparing ATS to vectorial dynamic body acceleration. Next, we deployed PSATs with ATS under captive conditions with cobia (Rachycentron canadum). Lastly, we deployed seven pop-off satellite archival tags (PSATs) able to collect and transmit ATS in the wild on adult sandbar sharks (Carcharhinus plumbeus). In the captive trials, we identified both resting and non-resting behavior for species and used logistic regression to compare ATS values with observed activity levels. In captive cobia, ATS was a significant predictor of observed activity levels. For 30-day wild deployments on sandbar sharks, satellites received 57.4–73.2% of the transmitted activity data. Of these ATS datapoints, between 21.9 and 41.2% of records had a concurrent set of temperature, depth, and light measurements. These results suggest that ATS is a practical metric for remotely monitoring and transmitting relative high-activity data in large-bodied aquatic species with variable activity levels, under changing environmental conditions, and across broad spatiotemporal scales.


BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shannon E. Pittman ◽  
Ian A. Bartoszek

Abstract Background Dispersal behavior is a critical component of invasive species dynamics, impacting both spatial spread and population density. In South Florida, Burmese pythons (Python bivittatus) are an invasive species that disrupt ecosystems and have the potential to expand their range northward. Control of python populations is limited by a lack of information on movement behavior and vital rates, especially within the younger age classes. We radio-tracked 28 Burmese pythons from hatching until natural mortality for approximately 3 years. Pythons were chosen from 4 clutches deposited by adult females in 4 different habitats: forested wetland, urban interface, upland pine, and agricultural interface. Results Known-fate survival estimate was 35.7% (95% CI = 18% - 53%) in the first 6 months, and only 2 snakes survived 3 years post hatching. Snakes moving through ‘natural’ habitats had higher survival than snakes dispersing through ‘modified’ habitats in the first 6- months post-hatching. Predation was the most common source of mortality. Snakes from the agricultural interface utilized canals and displayed the largest net movements. Conclusions Our results suggest that pythons may have lower survival if clutches are deposited in or near urbanized areas. Alternatively, juvenile pythons could quickly disperse to new locations by utilizing canals that facilitate linear movement. This study provides critical information about behavioral and life history characteristics of juvenile Burmese pythons that will inform management practices.


2015 ◽  
Vol 4 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Z. Liu ◽  
C. W. Higgins

Abstract. Submersible pressure transducers have been utilized for collecting water level data since the early 1960s. Together with a digital data logger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the wide use of pressure transducers for water level monitoring, little has been reported regarding their accuracy and performance under field conditions. The effects of temperature fluctuations on the output of vented pressure transducers were considered in this study. The pressure transducers were tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.


Author(s):  
Gabriel Núñez-Nogueira ◽  
Andres Arturo Granados-Berber

Coronaviruses are pathogens recognized for having an animal origin, commonly associated with terrestrial environments. However, although in a few cases, there are reports of their presence in aquatic organisms like fish, frogs, waterfowls and marine mammals. None of these cases has led to human health effects when contact with these infected organisms has taken place, whether they are alive or dead. Aquatic birds seem to be the main group carrying and circulating these types of viruses among healthy bird populations. Although the route of infection for CoVID-19 by water or aquatic organisms has not yet been observed in the wild, the relevance of its study is highlighted because there are cases of other viral infections known to have been transferred to humans by aquatic biota. It is encouraging to know that aquatic species, such as fish, marine mammals, and amphibians, shows very few cases of coronaviruses and that some other aquatic animals may also be a possible source of cure or treatment against then, as some evidence with algae and marine sponges suggest.


Author(s):  
GABRIEL NÚÑEZ-NOGUEIRA ◽  
Andres Arturo Granados-Berber

Coronaviruses are pathogens recognized for having an animal origin and commonly associated with terrestrial environments. However, although in few cases, there are reports of their presence in aquatic organisms like fish, crustaceans, waterfowls and marine mammals. None of these cases have even led to human health effects, when contact with these infected organisms, whether they are alive or dead. Aquatic birds seem to be the main group in carrying and circulating these types of viruses in healthy bird populations and play an important role in these environments. Although the route of infection for CoVID-19 (Coronavirus disease 2019) by water or aquatic organisms, has not yet been observed in the wild, the relevance of its study is highlighted , because there are cases of other viral infections (no coronavirus), which are known to have been transferred to the human by aquatic biota. What is even better, it becomes encouraging to know that aquatic species shows very few cases in fishes, marine mammals, and crustaceans, and some other aquatic animals may also be a possible source of cure or treatment against coronaviruses, as some evidence with algae and marine sponges suggests.


2016 ◽  
Vol 140 (4) ◽  
pp. 3066-3066
Author(s):  
Hokuto Shirakawa ◽  
Kenji Minami ◽  
Yohei Kawauchi ◽  
Makoto Tomiyasu ◽  
Yuichi Tsuda ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 20120919 ◽  
Author(s):  
Kyle H. Elliott ◽  
Maryline Le Vaillant ◽  
Akiko Kato ◽  
John R. Speakman ◽  
Yan Ropert-Coudert

Animal ecology is shaped by energy costs, yet it is difficult to measure fine-scale energy expenditure in the wild. Because metabolism is often closely correlated with mechanical work, accelerometers have the potential to provide detailed information on energy expenditure of wild animals over fine temporal scales. Nonetheless, accelerometry needs to be validated on wild animals, especially across different locomotory modes. We merged data collected on 20 thick-billed murres ( Uria lomvia ) from miniature accelerometers with measurements of daily energy expenditure over 24 h using doubly labelled water. Across three different locomotory modes (swimming, flying and movement on land), dynamic body acceleration was a good predictor of daily energy expenditure as measured independently by doubly labelled water ( R 2 = 0.73). The most parsimonious model suggested that different equations were needed to predict energy expenditure from accelerometry for flying than for surface swimming or activity on land ( R 2 = 0.81). Our results demonstrate that accelerometers can provide an accurate integrated measure of energy expenditure in wild animals using many different locomotory modes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9211
Author(s):  
Johanne M. Martens ◽  
Helena S. Stokes ◽  
Mathew L. Berg ◽  
Ken Walder ◽  
Shane R. Raidal ◽  
...  

Indirect transmission of pathogens can pose major risks to wildlife, yet the presence and persistence of wildlife pathogens in the environment has been little studied. Beak and feather disease virus (BFDV) is of global conservation concern: it can infect all members of the Psittaciformes, one of the most threatened bird orders, with infection often being lethal. Indirect transmission of BFDV through contaminated nest hollows has been proposed as a major infection source. However, data on whether and for how long nest sites in the wild remain contaminated have been absent. We determined the BFDV status of birds (parents and nestlings) for 82 nests of Crimson Rosellas, Platycercus elegans and Eastern Rosellas, Platycercus eximius. In 11 of these nests (13.4%, 95% confidence interval 6.9–22.7), we found an infected parent or nestling. Using nest swabs, we then compared BFDV presence at three points in time (before, during and after breeding) in three groups of nest boxes. These were nest boxes occupied by infected birds, and two control groups (nest boxes occupied by uninfected birds, and unoccupied nest boxes). Detection of BFDV on nest swabs was strongly associated with the infection status of parents in each nest box and with the timing of breeding. During breeding, boxes occupied by BFDV-positive birds were significantly more likely to have BFDV-positive nest swabs than boxes occupied by BFDV-negative birds; nest swabs tested BFDV-positive in 80% (28.4–99.5) of nests with parental antigen excretion, 66.7% (9.4–99.2) of nests occupied by parents with BFDV-positive cloacal swabs and 66.7% (22.3–95.7) of nests occupied by parents with BFDV–positive blood. 0% (0–52.2) of nests with BFDV–positive nestlings had BFDV–positive nest swabs. Across all boxes occupied by BFDV-positive birds (parents or nestlings), no nest swabs were BFDV–positive before breeding, 36.4% (95% CI 10.9–69.2) were positive during breeding and 9.1% (0.2–41.3) remained positive after breeding. BFDV was present on nest swabs for up to 3.7 months. Our study provides novel insights into the potential role of nest cavities and other fomites in indirect transmission of BFDV, and possibly other pathogens, and offers a non-invasive method for surveillance of pathogens in wild bird populations.


2017 ◽  
Author(s):  
Nozomi Nishiumi ◽  
Ayane Matsuo ◽  
Ryo Kawabe ◽  
Nicholas Payne ◽  
Charlie Huveneers ◽  
...  

AbstractAnimal-borne accelerometers are effective tools for quantifying the kinematics of animal behaviors, such as swimming, running, and flying, under natural conditions. However, quantifying burst movements of small and agile aquatic animals (e.g., small teleost fish), such as during predatory behavior, or while fleeing, remains challenging. To capture the details of burst movements, accelerometers need to sample at a very high frequency, which will inevitably shorten the duration of the recording or increase the size of the device. To overcome this problem, we developed a high-frequency acceleration data-logger that can be triggered by a manually-defined acceleration threshold, thus allowing the selective measurement of animal burst movements. We conducted experiments under laboratory and field conditions to examine the performance of the logger. The laboratory experiment using red seabream (Pagrus major) showed that the new logger could measure the kinematics of their escape behaviors (i.e., body beat cycles and maximum acceleration values). The field experiment using free-swimming yellowtail kingfish (Seriola lalandi) showed that the loggers trigger correctly (i.e., of the 18 burst movements, 17 were recorded by the loggers). We suggest that this new logger can be applied to measure the burst movements of various small and agile animals, whose movements may be otherwise difficult to measure.


Sign in / Sign up

Export Citation Format

Share Document