scholarly journals POOR VISIBILITY DURING WINTER OVER SANTACRUZ AIRPORT- ITS CAUSES AND FORECAST

MAUSAM ◽  
2022 ◽  
Vol 45 (3) ◽  
pp. 229-234
Author(s):  
R. SURESH

Th ere is rapid decrease in \isib ihl }' l1uri ne r a tly Illumine hou rs in winter season o ver Santacruzairport .Th e deterioration at times preve nt... a irc ra ft ope ra tio n in uu u for about ) ho ur or so ,Th e cau ses of red uct io n invisibility. l":.. strong nocturnal inversion {lew level ). poll ut ion in th e lower atmosphe re. lighl ....'ind etc have beenanalySt"d in th is paper. It was c bserved th at ind us trial end domestic po ll ution together with strong low level noctu rn a lin version causes poor visibility, Visib ility attains double minima-one between 1800 and 2UOO UTC and th e othe rbetween 0200 and 0300 lITC. An objective me thod 10 forec ast visibility in th e next 2 to 3 hOUfShas been d eveloped inthis paper.

2005 ◽  
Vol 133 (5) ◽  
pp. 1199-1223 ◽  
Author(s):  
Paul J. Neiman ◽  
Gary A. Wick ◽  
F. Martin Ralph ◽  
Brooks E. Martner ◽  
Allen B. White ◽  
...  

Abstract An objective algorithm presented in White et al. was applied to vertically pointing S-band (S-PROF) radar data recorded at four sites in northern California and western Oregon during four winters to assess the geographic, interannual, and synoptic variability of stratiform nonbrightband (NBB) rain in landfalling winter storms. NBB rain typically fell in a shallow layer residing beneath the melting level (<∼3.5 km MSL), whereas rainfall possessing a brightband (BB) was usually associated with deeper echoes (>∼6 km MSL). The shallow NBB echo tops often resided beneath the coverage of the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) scanning radars yet were still capable of producing flooding rains. NBB rain contributed significantly to the total winter-season rainfall at each of the four geographically distinct sites (i.e., 18%–35% of the winter-season rain totals). In addition, the rainfall observed at the coastal mountain site near Cazadero, California (CZD), during each of four winters was composed of a significant percentage of NBB rain (18%–50%); substantial NBB rainfall occurred regardless of the phase of the El Niño–Southern Oscillation (which ranged from strong El Niño to moderate La Niña conditions). Clearly, NBB rain occurs more widely and commonly in California and Oregon than can be inferred from the single-winter, single-site study of White et al. Composite NCEP–NCAR reanalysis maps and Geostationary Operational Environment Satellite (GOES) cloud-top temperature data were examined to evaluate the synoptic conditions that characterize periods of NBB precipitation observed at CZD and how they differ from periods with bright bands. The composites indicate that both rain types were tied generally to landfalling polar-cold-frontal systems. However, synoptic conditions favoring BB rain exhibited notable distinctions from those characterizing NBB periods. This included key differences in the position of the composite 300-mb jet stream and underlying cold front with respect to CZD, as well as notable differences in the intensity of the 500-mb shortwave trough offshore of CZD. The suite of BB composites exhibited dynamically consistent synoptic-scale characteristics that yielded stronger and deeper ascent over CZD than for the typically shallower NBB rain, consistent with the GOES satellite composites that showed 20-K warmer (2.3-km shallower) cloud tops for NBB rain. Composite soundings for both rain types possessed low-level potential instability, but the NBB sounding was warmer and moister with stronger low-level upslope flow, thus implying that orographically forced rainfall is enhanced during NBB conditions.


2016 ◽  
Vol 16 (12) ◽  
pp. 7773-7783 ◽  
Author(s):  
Jin Ming Ge ◽  
Huayue Liu ◽  
Jianping Huang ◽  
Qiang Fu

Abstract. While nocturnal low-level jets (NLLJs) occur frequently in many parts of the world, the occurrence and other detailed characteristics of NLLJs over the Taklimakan Desert (TD) are not well known. This paper presents a climatology of NLLJs and coincident dust over the TD by analyzing multi-year ERA-Interim reanalysis and satellite observations. It is found that the ERA-Interim dataset can capture the NLLJs' features well by comparison with radiosonde data from two surface sites. The NLLJs occur in more than 60 % of nights, which are primarily easterly to east-northeasterly. They typically appear at 100 to 400 m above the surface with a speed of 4 to 10 m s−1. Most NLLJs are located above the nocturnal inversion during the warm season, while they are embedded in the inversion layer during the cold season. NLLJs above the inversion have a strong annual cycle with a maximum frequency in August. We also quantify the convective boundary layer (CBL) height and construct an index to measure the magnitude of the momentum in the CBL. We find that the magnitude of momentum in the lower atmosphere from the top of the surface layer to the top of mixed layer is larger for NLLJ cases than for non-NLLJ cases, and in the warm season the downward momentum transfer process is more intense and rapid. The winds below the NLLJ core to the desert surface gain strength in summer and autumn, and these summer and autumn winds are coincident with an enhancement of aerosol optical depth. This indicates that the NLLJ is an important mechanism for dust activity and transport during the warm season over the Taklimakan.


2012 ◽  
Vol 144 (3) ◽  
pp. 441-449 ◽  
Author(s):  
Jakob Kutsher ◽  
Nitsa Haikin ◽  
Avi Sharon ◽  
Eyal Heifetz

2021 ◽  
Vol 13 (14) ◽  
pp. 2808
Author(s):  
Acharya Asutosh ◽  
Sourav Chatterjee ◽  
M.P. Subeesh ◽  
Athulya Radhakrishnan ◽  
Nuncio Murukesh

Clouds play a significant role in regulating the Arctic climate and water cycle due to their impacts on radiative balance through various complex feedback processes. However, there are still large discrepancies in satellite and numerical model-derived cloud datasets over the Arctic region due to a lack of observations. Here, we report observations of cloud base height (CBH) characteristics measured using a Vaisala CL51 ceilometer at Ny-Ålesund, Svalbard. The study highlights the monthly and seasonal CBH characteristics at the location. It is found that almost 40% of the lowest CBHs fall within a height range of 0.5–1 km. The second and third cloud bases that could be detected by the ceilometer are mostly concentrated below 3 km during summer but possess more vertical spread during the winter season. Thin and low-level clouds appear to be dominant during the summer. Low-level clouds are found to be dominant and observed in 76% of cases. The mid and high-level clouds occur in ~16% and ~7% of cases, respectively. Further, micro rain radar (MRR2) observed enhanced precipitation and snowfall events during the winter and spring which are found to be associated with the lowest CBHs within 2 km from the ground. The frontal process associated with synoptic-scale meteorological conditions explains the variabilities in CBH and precipitation at the observation site when compared for two contrasting winter precipitation events. The findings of the study could be useful for model evaluation of cloud precipitation relationships and satellite data validation in the Arctic environment.


2021 ◽  
Vol 13 (8) ◽  
pp. 1421
Author(s):  
Günther Heinemann ◽  
Clemens Drüe ◽  
Pascal Schwarz ◽  
Alexander Makshtas

In 2014/2015 a one-year field campaign at the Tiksi observatory in the Laptev Sea area was carried out using Sound Detection and Ranging/Radio Acoustic Sounding System (SODAR/RASS) measurements to investigate the atmospheric boundary layer (ABL) with a focus on low-level jets (LLJ) during the winter season. In addition to SODAR/RASS-derived vertical profiles of temperature, wind speed and direction, a suite of complementary measurements at the Tiksi observatory was available. Data of a regional atmospheric model were used to put the local data into the synoptic context. Two case studies of LLJ events are presented. The statistics of LLJs for six months show that in about 23% of all profiles LLJs were present with a mean jet speed and height of about 7 m/s and 240 m, respectively. In 3.4% of all profiles LLJs exceeding 10 m/s occurred. The main driving mechanism for LLJs seems to be the baroclinicity, since no inertial oscillations were found. LLJs with heights below 200 m are likely influenced by local topography.


2005 ◽  
Vol 18 (12) ◽  
pp. 1986-2003 ◽  
Author(s):  
Sébastien Conil ◽  
Laurent Z-X. Li

Abstract The observations of the ocean–atmosphere–sea ice have recently revealed that the oceanic surfaces can have a subtle but significant impact on the atmospheric long-term fluctuations. Low-frequency variations and long-term trends of the North Atlantic atmospheric circulation have been partly related to particular SST and sea ice features. In this work, the influence of typical tripolar SST and dipolar sea ice anomalies in the North Atlantic–Arctic on the atmosphere is investigated. A large ensemble of AGCM simulations forced by three different anomalous boundary conditions (SST, sea ice, and SST + sea ice) are used. The linearity of the simulated response in the winter season is particularly assessed. In these experiments, while the winter low-level temperature response is mainly symmetric about the sign of the forcing, the asymmetric part of the geopotential response is substantial. The sea ice forcing maintains a baroclinic response with a strong temperature anomaly in the vicinity of the forcing but with a weak vertical penetration. The SST maintains an NAO-like equivalent barotropic temperature and geopotential height response that extends throughout the troposphere. It is also shown that the combination of the two forcings is mainly linear for the low-level temperature and nonlinear for the geopotential height. While the SST forcing seems to be the main contributor to the total temperature and geopotential height responses, the sea ice forcing appears to introduce significant nonlinear perturbations.


2008 ◽  
Vol 65 (4) ◽  
pp. 1323-1341 ◽  
Author(s):  
Matthew D. Parker

Abstract Organized convection has long been recognized to have a nocturnal maximum over the central United States. The present study uses idealized numerical simulations to investigate the mechanisms for the maintenance, propagation, and evolution of nocturnal-like convective systems. As a litmus test for the basic governing dynamics, the experiments use horizontally homogeneous initial conditions (i.e., they include neither fronts nor low-level jet streams). The simulated storms are allowed to mature as surface-based convective systems before the boundary layer is cooled. In this case it is then surprisingly difficult to cut the mature convective systems off from their source of near-surface inflow parcels. Even when 10 K of the low-level cooling has been applied, the preexisting system cold pool is sufficient to lift boundary layer parcels to their levels of free convection. The present results suggest that many of the nocturnal convective systems that were previously thought to be elevated may actually be surface based. With additional cooling, the simulated systems do, indeed, become elevated. First, the CAPE of the near-surface air goes to zero: second, as the cold pool’s temperature deficit vanishes, the lifting mechanism evolves toward a bore atop the nocturnal inversion. Provided that air above the inversion has CAPE, the system then survives and begins to move at the characteristic speed of the bore. Interestingly, as the preconvective environment is cooled and approaches the temperature of the convective outflow, but before the system becomes elevated, yet another distinct behavior emerges. The comparatively weaker cold pool entails slower system motion but also more intense lifting, apparently because it is more nearly balanced by the lower-tropospheric shear. This could explain the frequent observation of intensifying convective systems in the evening hours without the need for a nocturnal low-level jet. The governing dynamics of the simulated systems, as well as the behavior of low-level tracers and parcel trajectories, are addressed for a variety of environments and degrees of stabilization.


2021 ◽  
Vol 78 (1) ◽  
pp. 313-327
Author(s):  
Kevin R. Haghi ◽  
Dale R. Durran

AbstractThe dynamics of a prototypical atmospheric bore are investigated through a series of two-dimensional numerical simulations and linear theory. These simulations demonstrate that the bore dynamics are inherently finite amplitude. Although the environment supports linear trapped waves, the supported waves propagate in roughly the opposite direction to that of the bore. Qualitative analysis of the Scorer parameter can therefore give misleading indications of the potential for wave trapping, and linear internal gravity wave dynamics do not govern the behavior of the bore. The presence of a layer of enhanced static stability below a deep layer of lower stability, as would be created by a nocturnal inversion, was not necessary for the development of a bore. The key environmental factor allowing bore propagation was the presence of a low-level jet directed opposite to the movement of the bore. Significant turbulence developed in the layer between the jet maximum and the surface, which reduced the low-level static stability behind the bore. Given the essential role of jets and thereby strong environmental wind shear, and given that idealized bores may persist in environments in which the static stability is constant with height, shallow-water dynamics do not appear to be quantitatively applicable to atmospheric bores propagating against low-level jets, although there are qualitative analogies.


Sign in / Sign up

Export Citation Format

Share Document