scholarly journals Sensitivity of structural damage to earthquake ground motion scenarios. The torrevieja earthquake case study

Author(s):  
N. Agea-Medina ◽  
S. Molina-Palacios ◽  
D. H. Lang ◽  
I. Ferreiro-Prieto ◽  
J. A. Huesca ◽  
...  
2013 ◽  
Vol 353-356 ◽  
pp. 2301-2304
Author(s):  
Fan Wu ◽  
Ming Wang ◽  
Xin Yuan Yang

High-rise buildings, as a result of rapid urbanization in China, become one of popular structure kind. However, there have been few seismic vulnerability studies on high-rise buildings, and few fragility curves have been developed for the buildings. Based on the published data of more than 50 high rises and super high rises, the structural information such as building heights, mode periods, locations and sites, the maximum design story drift ratios, are collected and analyzed. The vulnerability analysis for high rises uses response spectrum displacement as seismic ground motion input, since the structures have comparatively long natural period. Using statistics and regression analysis, the relationship between the maximum story drift ratio and response spectrum displacement is established. Based on height groups and earthquake design codes, the fragility curves of different performance levels can be developed. These curves can provide good loss estimation of high rise structural damage under earthquake ground motion.


Author(s):  
Dimcho Solakov ◽  
Stela Simeonova ◽  
Plamena Raykova ◽  
Boyko Rangelov ◽  
Constantin Ionescu

2020 ◽  
Author(s):  
Svetlana Stripajova ◽  
Peter Pazak ◽  
Jan Vodicka ◽  
Goran Trendafiloski

<p>The presence of thick soft alluvial sediment-filled basins, like in river’s deltas, can significantly amplify and prolongate the earthquake ground motion. Moreover, the high-water saturation of such soft sediments and cyclic earthquake loading can lead to liquefaction. The basin and liquefaction effect can contribute to substantial modification of the seismic motion and increase of the potential losses at a particular location. Well-known examples of such high financial losses during earthquakes for basin effect is Mw 8.1 Mexico City 1985 and for liquefaction is Darfield and Christchurch earthquakes series in 2010 and 2011. Thus, the quantification of these effects is particularly important for the current underwriting products and the industry requires their further detailed consideration in the catastrophe models and pricing approaches. Impact Forecasting, Aon’s catastrophe model development center of excellence, has been committed to help (re)insurers on that matter.</p><p>This paper presents case study of the quantification of the basin effect and liquefaction for Vancouver region, Canada for specific scenario Mw 7.5 Strait of Georgia crustal earthquake. The southern part of the Vancouver region is located on a deep sedimentary basin created in the Fraser River delta. In case of deep Vancouver sedimentary basin considering amplification only due to shallow site response Vs30-dependent site term is not sufficient. Therefore, we derived (de)amplification function for different periods to quantify basin effect. We used NGA – West 2 ground motion prediction equations (GMPEs) for crustal events which include basin depth term. Amplification function was derived with respect to standard GMPEs for crustal events in western Canada. Amplification, considering site response including Vs30 and basin depth term at period 0.5 s can reach values as high as 3 at the softest and deepest sediments. The liquefaction potential was based on HAZUS and Zhu et al. (2017) methodologies calibrated to better reflect local geological conditions and liquefaction observations (Monahan et al. 2010, Clague 2002). We used USGS Vs30 data, enhanced by local seismic and geologic measurements, to characterize soil conditions, and topographical data and IF proprietary flow accumulation data to characterize water saturation. Liquefaction hazard is calculated in terms of probability of liquefaction occurrence and permanent ground deformation. For the chosen scenario the potential contribution to mean loss due to basin effect could be in the range 15% - 30% and 35% - 75% due to liquefaction depending on structural types of the buildings.</p>


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Binod Adhikari ◽  
Subodh Dahal ◽  
Monika Karki ◽  
Roshan Kumar Mishra ◽  
Ranjan Kumar Dahal ◽  
...  

AbstractIn this paper, we estimate the seismogenic energy during the Nepal Earthquake (25 April 2015) and studied the ground motion time-frequency characteristics in Kathmandu valley. The idea to analyze time-frequency characteristic of seismogenic energy signal is based on wavelet transform which we employed here. Wavelet transform has been used as a powerful signal analysis tools in various fields like compression, time-frequency analysis, earthquake parameter determination, climate studies, etc. This technique is particularly suitable for non-stationary signal. It is well recognized that the earthquake ground motion is a non-stationary random process. In order to characterize a non-stationary random process, it is required immeasurable samples in the mathematical sense. The wavelet transformation procedures that we follow here helps in random analyses of linear and non-linear structural systems, which are subjected to earthquake ground motion. The manners of seismic ground motion are characterized through wavelet coefficients associated to these signals. Both continuous wavelet transform (CWT) and discrete wavelet transform (DWT) techniques are applied to study ground motion in Kathmandu Valley in horizontal and vertical directions. These techniques help to point out the long-period ground motion with site response. We found that the long-period ground motions have enough power for structural damage. Comparing both the horizontal and the vertical motion, we observed that the most of the high amplitude signals are associated with the vertical motion: the high energy is released in that direction. It is found that the seismic energy is damped soon after the main event; however the period of damping is different. This can be seen on DWT curve where square wavelet coefficient is high at the time of aftershock and the value decrease with time. In other words, it is mostly associated with the arrival of Rayleigh waves. We concluded that long-period ground motions should be studied by earthquake engineers in order to avoid structural damage during the earthquake. Hence, by using wavelet technique we can specify the vulnerability of seismically active region and local topological features out there.


Author(s):  
Erika Schiappapietra ◽  
Chiara Smerzini

AbstractThis paper investigates the spatial correlation of response spectral accelerations from a set of broadband physics-based ground motion simulations generated for the Norcia (Central Italy) area by means of the SPEED software. We produce several ground-motion scenarios by varying either the slip distribution or the hypocentral location as well as the magnitude to systematically explore the impact of such physical parameters on spatial correlations. We extend our analysis to other ground-motion components (vertical, fault-parallel, fault-normal) in addition to the more classic geometric mean to highlight possible ground-motion directionality and therefore identify specific spatial correlation features. Our analyses provide useful insights on the role of slip heterogeneities as well as the relative position between hypocentre and slip asperities on the spatial correlation. Indeed, we found a significant variability in terms of both range and sill among the considered case studies, suggesting that the spatial correlation is not only period-dependent, but also scenario-dependent. Finally, our results reveal that the isotropy assumption may represent an oversimplification especially in the near-field and thus it may be unsuitable for assessing the seismic risk of spatially-distributed infrastructures and portfolios of buildings.


2008 ◽  
Vol 56 ◽  
pp. 363-373 ◽  
Author(s):  
Mario Di Paola ◽  
Francesco Lo Iacono ◽  
Giacomo Navarra

Mitigation of structural damage due to earthquake ground motion may be performed by inserting dampers in the structure. In order to enhance the damping effect various toggle brace configurations have been recently proposed. In this paper these equipments are analyzed in detail and compared with a new one here proposed. The analysis is performed by taking into account the inherent nonlinearities of the damper by means of stochastic analysis and validated by using time histories of recorder accelerograms and by the stochastic analysis using spectrum consistent power spectral density.


Author(s):  
Yixiao Sheng ◽  
Qingkai Kong ◽  
Gregory C Beroza

Summary The spatial correlation of earthquake ground motion intensity can be measured from strong motion data; however, the data used in past studies is sparsely sampled in space, and only the inter-station distance was considered as a correlation variable. These limitations mean that we have only weak constraints on the true correlation structure of ground motion and that potentially important aspects of spatial correlation are unconstrained. In this study, we combine a large-N seismic array and graph analytics to explore this issue at a local scale using small local and regional earthquakes. Our result suggests site conditions, and how they interact with the incident seismic wavefield, strongly condition the spatial correlation of ground motion. Future progress in characterizing ground motion spatial variability will require dense wavefield measurements, either through nodal deployments, or perhaps distributed acoustic sensing (DAS) measurements, of seismic wavefields. Aftershock sequences of major earthquakes would provide particularly data-rich targets of opportunity.


2020 ◽  
Vol 110 (6) ◽  
pp. 2766-2776
Author(s):  
Noha Farghal ◽  
Annemarie Baltay ◽  
John Langbein

ABSTRACT Peak ground velocity (PGV) is a commonly used parameter in earthquake ground-motion models (GMMs) and hazard analyses, because it is closely related to structural damage and felt ground shaking, and is typically measured on broadband seismometers. Here, we demonstrate that strainmeters, which directly measure in situ strain in the bulk rock, can easily be related to ground velocity by a factor of bulk shear-wave velocity and, thus, can be used to measure strain-estimated PGV. We demonstrate the parity of velocity to strain utilizing data from borehole strainmeters deployed along the plate boundaries of the west coast of the United States for nine recent M 4.4–7.1 earthquakes in California, including the largest two events of the July 2019 Ridgecrest earthquake sequence. PGVs derived from maximum horizontal shear strains fall within the range of seismic-estimated values recorded at the same distances. We compare the strain-estimated data with GMMs based on seismic PGVs and find consistency in residual polarity (positive vs. negative; the sign of the difference between observed and modeled data) for certain earthquake–station paths, where some paths indicate an overestimation and others indicate an underestimation of strain-derived PGVs, as compared with the GMMs. We surmise that this may be indicative of over or underestimation of shear-wave velocity along those paths, as compared with the average velocity used to derive PGV from strain measurements, or indicative of repeatable site and path effects that are not accounted for in our analyses. This direct comparison of strain with velocity can highlight physical path effects, as well as improve the density and capability of ground-motion recordings.


Sign in / Sign up

Export Citation Format

Share Document