scholarly journals Aboveground impacts of a belowground invader: how invasive earthworms alter aboveground arthropod communities in a northern North American forest

2021 ◽  
Author(s):  
Malte Jochum ◽  
Lise Thouvenot ◽  
Olga Ferlian ◽  
Romy Zeiss ◽  
Bernhard Klarner ◽  
...  

AbstractDeclining arthropod communities have recently gained a lot of attention with climate and land-use change among the most-frequently discussed drivers. Here, we focus on a seemingly underrepresented driver of arthropod-community decline: biological invasions. For ∼12,000 years, earthworms have been absent from wide parts of northern North America, but they have been re-introduced with dramatic consequences. Most studies investigating earthworm-invasion impacts focus on the belowground world, resulting in limited knowledge on aboveground-community changes. We present observational data on earthworm, plant, and aboveground-arthropod communities in 60 plots, distributed across areas with increasing invasion status (low, medium, high) in a Canadian forest. We analyzed how earthworm-invasion status and biomass impact aboveground arthropod community abundance, biomass, and species richness, and how earthworm impacts cascade across trophic levels. We sampled ∼13,000 arthropods, dominated by Hemiptera, Diptera, Araneae, Thysanoptera, and Hymenoptera. Total arthropod abundance, biomass, and species richness declined significantly from areas of low to those with high invasion status with reductions of 61, 27, and 18%, respectively. Structural Equation Models unraveled that earthworms directly and indirectly impact arthropods across trophic levels. We show that earthworm invasion can alter aboveground multitrophic arthropod communities and suggest that belowground invasions can be important drivers of aboveground-arthropod decline.

2020 ◽  
Author(s):  
Tobias Roth ◽  
Lukas Kohli ◽  
Beat Rihm ◽  
Reto Meier ◽  
Valentin Amrhein

AbstractNitrogen (N) deposition caused by agriculture and combustion of fossil fuels is a major threat to plant diversity, but the effects on higher trophic levels are less clear. In this study we investigated how N deposition may affect butterfly species richness. We started with reviewing the literature and found that vegetation parameters might be as important as climate and habitat variables in explaining variation in butterfly species richness. It thus seems likely that increased N deposition indirectly affects butterfly communities via its influence on plant communities. We then analyzed data from the Swiss biodiversity monitoring program surveying species diversity of vascular plants and butterflies in 383 study sites of 1 km2 that are regularly distributed over Switzerland, covering a modelled N deposition gradient from 2 to 44 kg N ha−1 yr−1. Using traditional linear models and structural equation models, we found that high N deposition was consistently linked to low butterfly diversity, suggesting a net loss of butterfly diversity through increased N deposition. At low elevations, N deposition may contribute to a reduction in butterfly species richness via microclimatic cooling due to increased plant biomass. At higher elevations, negative effects of N deposition on butterfly species richness may also be mediated by reduced plant species richness. We conclude that in addition to factors such as intensified agriculture, habitat fragmentation and climate change, nitrogen deposition is likely to play a key role in affecting butterfly diversity.


2016 ◽  
Vol 371 (1694) ◽  
pp. 20150284 ◽  
Author(s):  
Vanessa Minden ◽  
Christoph Scherber ◽  
Miguel A. Cebrián Piqueras ◽  
Juliane Trinogga ◽  
Anastasia Trenkamp ◽  
...  

Ecosystems managed for production of biomass are often characterized by low biodiversity because management aims to optimize single ecosystem functions (i.e. yield) involving deliberate selection of species or cultivars. In consequence, considerable differences in observed plant species richness and productivity remain across systems, and the drivers of these differences have remained poorly resolved so far. In addition, it has remained unclear if species richness feeds back on ecosystem functions such as yield in real-world systems. Here, we establish N = 360 experimental plots across a broad range of managed ecosystems in several European countries, and use structural equation models to unravel potential drivers of plant species richness. We hypothesize that the relationships between productivity, total biomass and observed species richness are affected by management intensity, and that these effects differ between habitat types (dry grasslands, grasslands, and wetlands). We found that local management was an important driver of species richness across systems. Management caused system disturbance, resulting in reduced productivity yet enhanced total biomass. Plant species richness was directly and positively driven by management, with consistently negative effects of total biomass. Productivity effects on richness were positive, negative or neutral. Our study shows that management and total biomass drive plant species richness across real-world managed systems.


2021 ◽  
Vol 4 ◽  
Author(s):  
Andrea Jara-Guerrero ◽  
Diego González-Sánchez ◽  
Adrián Escudero ◽  
Carlos I. Espinosa

Chronic disturbance is widely recognized as one of main triggers of diversity loss in seasonally dry tropical forests (SDTFs). However, the pathways through which diffuse disturbance is acting on the forest are little understood. This information is especially demanded in the case of vanishing Neotropical seasonally dry forests such as the Tumbesian ones. We proposed a conceptual model to analyze the factors behind the loss of woody species richness along a forest disturbance gradient, explicitly considering the existence of direct and indirect causal pathways of biodiversity loss. We hypothesized that the chronic disturbance can act on the woody species richness directly, either by selective extraction of resources or by browsing of palatable species for livestock, or indirectly, by modifying characteristics of the forest structure and productivity. To test our model, we sampled forest remnants in a very extensive area submitted to long standing chronic pressure. Our forests cells (200 × 200 m) were characterized both in terms of woody species composition, structure, and human pressure. Our structural equation models (SEMs) showed that chronic disturbance is driving a loss of species richness. This was done mainly by indirect effects through the reduction of large trees density. We assume that changes in tree density modify the environmental conditions, thus increasing the stress and finally filtering some specific species. The analysis of both, direct and indirect, allows us to gain a better understanding of the processes behind plant species loss in this SDTF.


2021 ◽  
Author(s):  
Florian Schnabel ◽  
Xiaojuan Liu ◽  
Matthias Kunz ◽  
Kathryn E. Barry ◽  
Franca J. Bongers ◽  
...  

AbstractExtreme climatic events threaten forests and their climate mitigation potential globally. Understanding the drivers promoting ecosystems stability is therefore considered crucial to mitigate adverse climate change effects on forests. Here, we use structural equation models to explain how tree species richness, asynchronous species dynamics and diversity in hydraulic traits affect the stability of forest productivity along an experimentally manipulated biodiversity gradient ranging from 1 to 24 tree species. Tree species richness improved stability by increasing species asynchrony. That is at higher species richness, inter-annual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was mediated by the diversity of species’ hydraulic traits in relation to drought tolerance and stomatal control, but not the community-weighted means of these traits. Our results demonstrate important mechanisms by which tree species richness stabilizes forest productivity, thus emphasizing the importance of hydraulically diverse, mixed-species forests to adapt to climate change.


2015 ◽  
Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on general linear mixed effects models. Combining inferences from 8 traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.


2015 ◽  
Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori manipulated functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within two levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on general linear mixed effects models. Combining inferences from 8 traits into a single multivariate index increased prediction accuracy of these properties relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within and between trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.


2019 ◽  
Vol 286 (1906) ◽  
pp. 20191189 ◽  
Author(s):  
Aurore Maureaud ◽  
Dorothee Hodapp ◽  
P. Daniël van Denderen ◽  
Helmut Hillebrand ◽  
Henrik Gislason ◽  
...  

The relationship between biodiversity and ecosystem functioning (BEF) is a topic of considerable interest to scientists and managers because a better understanding of its underlying mechanisms may help us mitigate the consequences of biodiversity loss on ecosystems. Our current knowledge of BEF relies heavily on theoretical and experimental studies, typically conducted on a narrow range of spatio-temporal scales, environmental conditions, and trophic levels. Hence, whether a relationship holds in the natural environment is poorly understood, especially in exploited marine ecosystems. Using large-scale observations of marine fish communities, we applied a structural equation modelling framework to investigate the existence and significance of BEF relationships across northwestern European seas. We find that ecosystem functioning, here represented by spatial patterns in total fish biomass, is unrelated to species richness—the most commonly used diversity metric in BEF studies. Instead, community evenness, differences in species composition, and abiotic variables are significant drivers. In particular, we find that high fish biomass is associated with fish assemblages dominated by a few generalist species of a high trophic level, who are able to exploit both the benthic and pelagic energy pathway. Our study provides a better understanding of the mechanisms behind marine ecosystem functioning and allows for the integration of biodiversity into management considerations.


Author(s):  
Ryan Schmid ◽  
Kelton Welch ◽  
Jonathan Lundgren

Grassland systems constitute a significant portion of the land area in the U.S., and as a result, harbor a significant amount of arthropod diversity. During this time of biodiversity loss around the world, bioinventories of ecologically important habitats serve as important indicators for the effectiveness of conservation efforts. We conducted a bioinventory of the foliar, soil, and dung arthropod communities in 10 cattle pastures located in the southeastern U.S. during the 2018 grazing season. In sum, 126,251 specimens were collected. From the foliar community, 13 arthropod orders were observed, with the greatest species richness found in Hymenoptera, Diptera, and Hemiptera. The soil-dwelling arthropod community contained 18 orders. The three orders comprising the highest species richness were Coleoptera, Diptera, and Hymenoptera. Lastly, 12 arthropod orders were collected from cattle dung, with the greatest species richness found in Coleoptera, Diptera, and Hymenoptera. Herbivores were the most abundant functional guild found in the foliar community, and predators were most abundant in the soil and dung communities. While bioinventories demand considerable time, energy, and resources to accomplish, the information from these inventories has many uses for conservation efforts, land management recommendations, and the direction of climate change science.


Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain biodiversity effects on ecosystem functioning has attracted intense recent interest, yet very few a priori manipulations of functional diversity have been attempted to date, especially from a food web perspective. Here, we simultaneously manipulated multiple functional traits of estuarine grazers and predators within multiple levels of species richness to test whether species richness or functional diversity is a better predictor of ecosystem functioning in multitrophic estuarine food webs. Community functional diversity better predicted the majority of ecosystem responses based on results from generalized linear mixed effects models. Structural equation modeling revealed that this outcome was independently attributable to functional diversity of both trophic levels, with stronger effects observed for predators. Functional complementarity was also important, as species with different combinations of traits influenced different ecosystem functions. Our study is the first to extend experimental investigations of functional diversity to a multilevel food web, and demonstrates that functional diversity is more effective than species richness in predicting ecosystem functioning in a food web context.


2021 ◽  
Author(s):  
Chloé Schmidt ◽  
Jason Munshi-South ◽  
Colin J Garroway

AbstractWe know little about the general links between broad-scale biodiversity patterns at the nuclear genetic and species levels. Recent work in mammals suggests environmental carrying capacity and ecological opportunity link these two base levels of biodiversity. Energy- and resource-rich environments are thought to support larger populations with higher genetic diversity and species richness. Niche availability is expected to limit population size causing drift while increasing genetic differentiation due to environmental specialization. Several of the processes underlying these links are temperature-dependent, so we might expect different patterns for endotherms and ectotherms. We use a database comprised of raw microsatellite genotypes for 13616 individuals of 18 species sampled at 548 locations in the United States and Canada. We analyzed salamander and frog species separately and simultaneously fit our hypotheses with structural equation models. Similar to mammals, niche availability was the primary contributor to diversity at both the genetic and species levels in frogs, and energy availability was an important predictor of species richness for both taxa. Different than mammals, environmental energy availability was not linked to genetic diversity. There are shared underlying mechanisms linking genetic and species-level diversity but the processes are not entirely general across these species groups.


Sign in / Sign up

Export Citation Format

Share Document