habitat specialist species
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
Vol 29 (1) ◽  
pp. 9-16
Author(s):  
Md. Fazle Rabbe ◽  
Nur Mohammad ◽  
Dipongkor Roy ◽  
M. Firoj Jaman ◽  
M Niamul Naser

The ecological effects of habitat use by herpetofaunal species vary widely and recognizing relative habitat value will help to improve conservation theory and practice in a particular landscape. To understand how different habitat uses influence diversity in riparian landscapes, we studied reptile and amphibian assemblages across major habitats (agricultural land, forest, human habitation, and waterbodies) in Nijhum Dwip National Park, Bangladesh. A total of 35 herpetofaunal species were found; among them, 17 were directly observed and 18 were reported from a questionnaire survey. Among the observed species, the Asian Common Toad Duttaphrynus melanostictus was the most commonly seen (relative abundance 0.32). We found that forest habitat contained a greater diversity of herpetofauna than other habitats followed by agricultural land, human habitation, and waterbodies. We also found 8 habitat specialist species and 9 generalist species in this study. Our results show that different habitats support different species assemblages in Nijhum Dwip National Park, signifying the importance of diversified habitats for the herpetofaunal population. Understanding this importance is crucial for identifying matrix environments that can complement the forest habitats of sensitive as well as specialist herpetofaunal species.


2021 ◽  
Vol 288 (1957) ◽  
pp. 20211010
Author(s):  
Thomas J. P. Travers ◽  
Jamie Alison ◽  
Sarah D. Taylor ◽  
Humphrey Q. P. Crick ◽  
Jenny A. Hodgson

As species’ ranges shift to track climate change, conservationists increasingly recognize the need to consider connectivity when designating protected areas (PAs). In fragmented landscapes, some habitat patches are more important than others in maintaining connectivity, and methods are needed for their identification. Here, using the Condatis methodology, we model range expansion through an adaptation of circuit theory. Specifically, we map ‘flow’ through 16 conservation priority habitat networks in England, quantifying how patches contribute to functional South–North connectivity. We also explore how much additional connectivity could be protected via a connectivity-led protection procedure. We find high-flow patches are often left out of existing PAs; across 12 of 16 habitat networks, connectivity protection falls short of area protection by 13.6% on average. We conclude that the legacy of past protection decisions has left habitat-specialist species vulnerable to climate change. This situation may be mirrored in many countries which have similar habitat protection principles. Addressing this requires specific planning tools that can account for the directions species may shift. Our connectivity-led reserve selection procedure efficiently identifies additional PAs that prioritize connectivity, protecting a median of 40.9% more connectivity in these landscapes with just a 10% increase in area.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11728
Author(s):  
Hanlie M. Engelbrecht ◽  
William R. Branch ◽  
Krystal A. Tolley

Background The African continent is comprised of several different biomes, although savanna is the most prevalent. The current heterogeneous landscape was formed through long-term vegetation shifts as a result of the global cooling trend since the Oligocene epoch. The overwhelming trend was a shift from primarily forest, to primarily savanna. As such, faunal groups that emerged during the Paleogene/Neogene period and have species distributed in both forest and savanna habitat should show a genetic signature of the possible evolutionary impact of these biome developments. Crotaphopeltis and Philothamnus (Colubridae) are excellent taxa to investigate the evolutionary impact of these biome developments on widespread African colubrid snakes, and whether timing and patterns of radiation are synchronous with biome reorganisation. Methods A phylogenetic framework was used to investigate timing of lineage diversification. Phylogenetic analysis included both genera as well as other Colubridae to construct a temporal framework in order to estimate radiation times for Crotaphopeltis and Philothamnus. Lineage diversification was estimated in Bayesian Evolutionary Analysis Sampling Trees (BEAST), using two mitochondrial markers (cyt–b, ND4), one nuclear marker (c–mos), and incorporating one fossil and two biogeographical calibration points. Vegetation layers were used to classify and confirm species association with broad biome types (‘closed’ = forest, ‘open’ = savanna/other), and the ancestral habitat state for each genus was estimated. Results Philothamnus showed an ancestral state of closed habitat, but the ancestral habitat type for Crotaphopeltis was equivocal. Both genera showed similar timing of lineage diversification diverging from their sister genera during the Oligocene/Miocene transition (ca. 25 Mya), with subsequent species radiation in the Mid-Miocene. Philothamnus appeared to have undergone allopatric speciation during Mid-Miocene forest fragmentation. Habitat generalist and open habitat specialist species emerged as savanna became more prevalent, while at least two forest associated lineages within Crotaphopeltis moved into Afromontane forest habitat secondarily and independently. Discussion With similar diversification times, but contrasting ancestral habitat reconstructions, we show that these genera have responded very differently to the same broad biome shifts. Differences in biogeographical patterns for the two African colubrid genera is likely an effect of distinct life-history traits, such as the arboreous habits of Philothamnus compared to the terrestrial lifestyle of Crotaphopeltis.


Author(s):  
Marius Junker ◽  
Martin Konvicka ◽  
Kamil Zimmermann ◽  
Thomas Schmitt

AbstractIn human-altered landscapes, species with specific habitat requirements tend to persist as metapopulations, forming colonies restricted to patches of suitable habitats, displaying mutually independent within-patch dynamics and interconnected by inter-colony movements of individuals. Despite intuitive appeal and both empirical and analytical evidence, metapopulations of only relatively few butterfly systems had been both monitored for multiple years to quantify metapopulation dynamics, and assayed from the point of view of population genetics. We used allozyme analysis to study the genetic make-up of a metapopulation of a declining and EU-protected butterfly, Euphydryas aurinia, inhabiting humid grasslands in western Czech Republic, and reanalysed previously published demography and dispersal data to interpret the patterns. For 497 colony x year visits to the 97 colonies known at that time, we found annual extinction and colonisation probabilities roughly equal to 4%. The genetic diversity within colonies was intermediate or high for all assessed parameters of population genetic diversity and hence higher than expected for such a habitat specialist species. All the standard genetic diversity measures were positively correlated to adult counts and colony areas, but the correlations were weak and rarely significant, probably due to the rapid within-colony population dynamics. Only very weak correlations applied to larval nests numbers. We conclude that the entirety of colonies forms a well-connected system for their majority. Especially in its core parts, we assume a metapopulation structure with a dynamic equilibrium between local extinction and recolonization. It is vital to conserve in particular these structures of large and interconnected colonies.Implications for insect conservation: Conservation measures should focus on considering more in depth the habitat requirements of E. aurinia for management plans and on stabilisation strategies for colonies, especially of peripheral ones, e.g. by habitat restoration.


2019 ◽  
Vol 286 (1913) ◽  
pp. 20191724
Author(s):  
Jacob B. Socolar ◽  
David S. Wilcove

Species’ traits influence how populations respond to land-use change. However, even in well-characterized groups such as birds, widely studied traits explain only a modest proportion of the variance in response across species. Here, we show that associations with particular forest types strongly predict the sensitivity of forest-dwelling Amazonian birds to agriculture. Incorporating these fine-scale habitat associations into models of population response dramatically improves predictive performance and markedly outperforms the functional traits that commonly appear in similar analyses. Moreover, by identifying habitat features that support assemblages of unusually sensitive habitat-specialist species, our model furnishes straightforward conservation recommendations. In Amazonia, species that specialize on forests along a soil–nutrient gradient (i.e. both rich-soil specialists and poor-soil specialists) are exceptionally sensitive to agriculture, whereas species that specialize on floodplain forests are unusually insensitive. Thus, habitat specialization per se does not predict disturbance sensitivity, but particular habitat associations do. A focus on conserving specific habitats that harbour highly sensitive avifaunas (e.g. poor-soil forest) would protect a critically threatened component of regional biodiversity. We present a conceptual model to explain the divergent responses of habitat specialists in the different habitats, and we suggest that similar patterns and conservation opportunities probably exist for other taxa and regions.


2019 ◽  
Vol 15 (7) ◽  
pp. 20190264 ◽  
Author(s):  
Juan P. González-Varo ◽  
Sarah Díaz-García ◽  
Juan M. Arroyo ◽  
Pedro Jordano

Juvenile animals generally disperse from their birthplace to their future breeding territories. In fragmented landscapes, habitat-specialist species must disperse through the anthropogenic matrix where remnant habitats are embedded. Here, we test the hypothesis that dispersing juvenile frugivores leave a footprint in the form of seed deposition through the matrix of fragmented landscapes. We focused on the Sardinian warbler ( Sylvia melanocephala ), a resident frugivorous passerine. We used data from field sampling of bird-dispersed seeds in the forest and matrix of a fragmented landscape, subsequent disperser identification through DNA-barcoding analysis, and data from a national bird-ringing programme. Seed dispersal by Sardinian warblers was confined to the forest most of the year, but warblers contributed a peak of seed-dispersal events in the matrix between July and October, mainly attributable to dispersing juveniles. Our study uniquely connects animal and plant dispersal, demonstrating that juveniles of habitat-specialist frugivores can provide mobile-link functions transiently, but in a seasonally predictable way.


2018 ◽  
Vol 6 ◽  
pp. e24203 ◽  
Author(s):  
Davide Giuliano ◽  
Giuseppe Bogliani

Rice fields represent a valuable surrogate habitat for many wetland species, playing an important role for biodiversity conservation in human-managed landscapes. Despite the fact that several taxonomic groups have been thoroughly investigated in this agroecosystem, little is known about the orthopteran fauna which lives in and around rice paddies, especially in Europe. In this paper, we provide a first description of the orthopteran assemblages hosted in the rice agroecosystems of northern Italy, trying to evaluate their conservation value through an analysis of species ecological traits (habitat specificity and dispersal capacity). During field samplings in summer 2016, we detected 25 orthopteran species. The 24% of the community was composed by habitat specialist species and the 56% of the sampled taxa was characterised by high dispersal capacities. Rice fields are an extremely dynamic ecosystem, characterised by the continuous succession of flooding and drying periods and conditioned by many other farming activities. Consequently, the orthopteran fauna in rice crops is mainly composed of species well adapted to sudden environmental changes. On the other hand, rice fields represent a particular biotope, providing a suitable habitat especially for hygrophilous species, which are otherwise restricted to scattered marsh areas. In order to preserve orthopteran diversity in rice agroecosystems, sustainable farming practices should be applied, especially by preserving and restoring marginal semi-natural habitats, by reducing grass management intensity on paddy banks and by discouraging rice cultivation in dry soils.


2015 ◽  
Vol 105 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Diego Costa Kenne ◽  
Paula Beatriz Araujo

ABSTRACT Balloniscus glaber Araujo & Zardo, 1995 (Balloniscidae), a Neotropical Oniscidea, has been recorded historically in environments with low or no human interference. In one of these areas, it was determined as aK-strategist. Recently, however, this species was documented in a disturbed forest within urban limits. The present work revealed that the population in the urban area has high density, high number of ovigerous females and mancae in the population, a long reproductive period, and early sexual maturity. These results suggest that modified environments may provide favorable conditions and that the species is not negatively affected by human influence.


Sign in / Sign up

Export Citation Format

Share Document