Improving RGB-D SLAM in dynamic environments using semantic aided segmentation

Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Lhilo Kenye ◽  
Rahul Kala

Summary Most conventional simultaneous localization and mapping (SLAM) approaches assume the working environment to be static. In a highly dynamic environment, this assumption divulges the impediments of a SLAM algorithm that lack modules that distinctively attend to dynamic objects despite the inclusion of optimization techniques. This work exploits such environments and reduces the effects of dynamic objects in a SLAM algorithm by separating features belonging to dynamic objects and static background using a generated binary mask image. While the features belonging to the static region are used for performing SLAM, the features belonging to non-static segments are reused instead of being eliminated. The approach employs deep neural network or DNN-based object detection module to obtain bounding boxes and then generates a lower resolution binary mask image using depth-first search algorithm over the detected semantics, characterizing the segmentation of the foreground from the static background. In addition, the features belonging to dynamic objects are tracked into consecutive frames to obtain better masking consistency. The proposed approach is tested on both publicly available dataset as well as self-collected dataset, which includes both indoor and outdoor environments. The experimental results show that the removal of features belonging to dynamic objects for a SLAM algorithm can significantly improve the overall output in a dynamic scene.

2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Abira Kanwal ◽  
Zunaira Anjum ◽  
Wasif Muhammad

A simultaneous localization and mapping (SLAM) algorithm allows a mobile robot or a driverless car to determine its location in an unknown and dynamic environment where it is placed, and simultaneously allows it to build a consistent map of that environment. Driverless cars are becoming an emerging reality from science fiction, but there is still too much required for the development of technological breakthroughs for their control, guidance, safety, and health related issues. One existing problem which is required to be addressed is SLAM of driverless car in GPS denied-areas, i.e., congested urban areas with large buildings where GPS signals are weak as a result of congested infrastructure. Due to poor reception of GPS signals in these areas, there is an immense need to localize and route driverless car using onboard sensory modalities, e.g., LIDAR, RADAR, etc., without being dependent on GPS information for its navigation and control. The driverless car SLAM using LIDAR and RADAR involves costly sensors, which appears to be a limitation of this approach. To overcome these limitations, in this article we propose a visual information-based SLAM (vSLAM) algorithm for GPS-denied areas using a cheap video camera. As a front-end process, features-based monocular visual odometry (VO) on grayscale input image frames is performed. Random Sample Consensus (RANSAC) refinement and global pose estimation is performed as a back-end process. The results obtained from the proposed approach demonstrate 95% accuracy with a maximum mean error of 4.98.


2021 ◽  
Vol 11 (4) ◽  
pp. 1828
Author(s):  
Yakun Wu ◽  
Li Luo ◽  
Shujuan Yin ◽  
Mengqi Yu ◽  
Fei Qiao ◽  
...  

The Simultaneous Localization and Mapping (SLAM) algorithm is a hotspot in robot application research with the ability to help mobile robots solve the most fundamental problems of “localization” and “mapping”. The visual semantic SLAM algorithm fused with semantic information enables robots to understand the surrounding environment better, thus dealing with complexity and variability of real application scenarios. DS-SLAM (Semantic SLAM towards Dynamic Environment), one of the representative works in visual semantic SLAM, enhances the robustness in the dynamic scene through semantic information. However, the introduction of deep learning increases the complexity of the system, which makes it a considerable challenge to achieve the real-time semantic SLAM system on the low-power embedded platform. In this paper, we realized the high energy-efficiency DS-SLAM algorithm on the Field Programmable Gate Array (FPGA) based heterogeneous platform through the optimization co-design of software and hardware with the help of OpenCL (Open Computing Language) development flow. Compared with Intel i7 CPU on the TUM dataset, our accelerator achieves up to 13× frame rate improvement, and up to 18× energy efficiency improvement, without significant loss in accuracy.


Robotica ◽  
2013 ◽  
Vol 31 (6) ◽  
pp. 905-921 ◽  
Author(s):  
Fernando A. Auat Cheein

SUMMARYIn this work, an optimal maneuverability strategy for car-like unmanned vehicles operating in restricted environments is presented. The maneuverability strategy is based on a path planning algorithm that uses the environment information to plan a safe, feasible and optimum path for the unmanned mobile robot. The environment information is obtained by means of a simultaneous localization and mapping (SLAM) algorithm. The SLAM algorithm uses the sensors' information to build a map of the surrounding environment. A Monte Carlo sampling technique is used to find an optimal and safe path within the environment based on the SLAM information. The objective of the planning is to safely reach a desired orientation in a bounded space. Theoretical demonstrations and real-time experimental results (in indoor and outdoor environments) are also presented in this work.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
Kai Wang ◽  
Jun Zhou ◽  
Wenhai Zhang ◽  
Baohua Zhang

To meet the demand for canopy morphological parameter measurements in orchards, a mobile scanning system is designed based on the 3D Simultaneous Localization and Mapping (SLAM) algorithm. The system uses a lightweight LiDAR-Inertial Measurement Unit (LiDAR-IMU) state estimator and a rotation-constrained optimization algorithm to reconstruct a point cloud map of the orchard. Then, Statistical Outlier Removal (SOR) filtering and European clustering algorithms are used to segment the orchard point cloud from which the ground information has been separated, and the k-nearest neighbour (KNN) search algorithm is used to restore the filtered point cloud. Finally, the height of the fruit trees and the volume of the canopy are obtained by the point cloud statistical method and the 3D alpha-shape algorithm. To verify the algorithm, tracked robots equipped with LIDAR and an IMU are used in a standardized orchard. Experiments show that the system in this paper can reconstruct the orchard point cloud environment with high accuracy and can obtain the point cloud information of all fruit trees in the orchard environment. The accuracy of point cloud-based segmentation of fruit trees in the orchard is 95.4%. The R2 and Root Mean Square Error (RMSE) values of crown height are 0.93682 and 0.04337, respectively, and the corresponding values of canopy volume are 0.8406 and 1.5738, respectively. In summary, this system achieves a good evaluation result of orchard crown information and has important application value in the intelligent measurement of fruit trees.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


2021 ◽  
Vol 13 (12) ◽  
pp. 2351
Author(s):  
Alessandro Torresani ◽  
Fabio Menna ◽  
Roberto Battisti ◽  
Fabio Remondino

Mobile and handheld mapping systems are becoming widely used nowadays as fast and cost-effective data acquisition systems for 3D reconstruction purposes. While most of the research and commercial systems are based on active sensors, solutions employing only cameras and photogrammetry are attracting more and more interest due to their significantly minor costs, size and power consumption. In this work we propose an ARM-based, low-cost and lightweight stereo vision mobile mapping system based on a Visual Simultaneous Localization And Mapping (V-SLAM) algorithm. The prototype system, named GuPho (Guided Photogrammetric System) also integrates an in-house guidance system which enables optimized image acquisitions, robust management of the cameras and feedback on positioning and acquisition speed. The presented results show the effectiveness of the developed prototype in mapping large scenarios, enabling motion blur prevention, robust camera exposure control and achieving accurate 3D results.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
John Akagi ◽  
T. Devon Morris ◽  
Brady Moon ◽  
Xingguang Chen ◽  
Cameron K. Peterson

Abstract Directing groups of unmanned air vehicles (UAVs) is a task that typically requires the full attention of several operators. This can be prohibitive in situations where an operator must pay attention to their surroundings. In this paper we present a gesture device that assists operators in commanding UAVs in focus-constrained environments. The operator influences the UAVs’ behavior by using intuitive hand gesture movements. Gestures are captured using an accelerometer and gyroscope and then classified using a logistic regression model. Ten gestures were chosen to provide behaviors for a group of fixed-wing UAVs. These behaviors specified various searching, following, and tracking patterns that could be used in a dynamic environment. A novel variant of the Monte Carlo Tree Search algorithm was developed to autonomously plan the paths of the cooperating UAVs. These autonomy algorithms were executed when their corresponding gesture was recognized by the gesture device. The gesture device was trained to classify the ten gestures and accurately identified them 95% of the time. Each of the behaviors associated with the gestures was tested in hardware-in-the-loop simulations and the ability to dynamically switch between them was demonstrated. The results show that the system can be used as a natural interface to assist an operator in directing a fleet of UAVs. Article highlights A gesture device was created that enables operators to command a group of UAVs in focus-constrained environments. Each gesture triggers high-level commands that direct a UAV group to execute complex behaviors. Software simulations and hardware-in-the-loop testing shows the device is effective in directing UAV groups.


Author(s):  
Surender Reddy Salkuti

<p>This paper solves an optimal reactive power scheduling problem in the deregulated power system using the evolutionary based Cuckoo Search Algorithm (CSA). Reactive power scheduling is a very important problem in the power system operation, which is a nonlinear and mixed integer programming problem. It optimizes a specific objective function while satisfying all the equality and inequality constraints. In this paper, CSA is used to determine the optimal settings of control variables such as generator voltages, transformer tap positions and the amount of reactive compensation required to optimize the certain objective functions. The CSA algorithm has been developed from the inspiration that the obligate brood parasitism of some Cuckoo species lay their eggs in nests of other host birds which are of other species. The performance of CSA for solving the proposed optimal reactive power scheduling problem is examined on standard Ward Hale 6 bus, IEEE 30 bus, 57 bus, 118 bus and 300 bus test systems. The simulation results show that the proposed approach is more suitable, effective and efficient compared to other optimization techniques presented in the literature.</p>


In present trends organizations are very much interested to protect data and prevent malware attack by using well flourished and excellent tools. Many algorithms are used for the intrusion detection system (IDS) and it has pros and cons. Here we proposed a novel method of intrusion detection using hybrid optimization techniques such as Gravity search algorithm with gray wolf optimization (GSGW). In this method the gray wolf technique has a leader for the continuous monitoring of the attacker and has a low false alarm rate and a high detection rate. The performance evaluation is done by the feature selection in NSL-KDD dataset. In the proposed method the experimental result reveals less false alarm rate, better accuracy and high Detection when compared to previous analysis.


Sign in / Sign up

Export Citation Format

Share Document