antibody delivery
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 3)

Nanoscale ◽  
2022 ◽  
Author(s):  
Shengran Li ◽  
Xintao Xie ◽  
Wenliang Wang ◽  
Sangni Jiang ◽  
Weikang Mei ◽  
...  

Liposomes are used to deliver therapeutics in vivo because of their good biocompatibility, efficient delivery, and ability to protect the therapeutics from degradation. However, the instability of liposomes will cause...


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2014
Author(s):  
Rinie Bajracharya ◽  
Alayna C. Caruso ◽  
Laura J. Vella ◽  
Rebecca M. Nisbet

For the treatment of neurological diseases, achieving sufficient exposure to the brain parenchyma is a critical determinant of drug efficacy. The blood–brain barrier (BBB) functions to tightly control the passage of substances between the bloodstream and the central nervous system, and as such poses a major obstacle that must be overcome for therapeutics to enter the brain. Monoclonal antibodies have emerged as one of the best-selling treatment modalities available in the pharmaceutical market owing to their high target specificity. However, it has been estimated that only 0.1% of peripherally administered antibodies can cross the BBB, contributing to the low success rate of immunotherapy seen in clinical trials for the treatment of neurological diseases. The development of new strategies for antibody delivery across the BBB is thereby crucial to improve immunotherapeutic efficacy. Here, we discuss the current strategies that have been employed to enhance antibody delivery across the BBB. These include (i) focused ultrasound in combination with microbubbles, (ii) engineered bi-specific antibodies, and (iii) nanoparticles. Furthermore, we discuss emerging strategies such as extracellular vesicles with BBB-crossing properties and vectored antibody genes capable of being encapsulated within a BBB delivery vehicle.


Author(s):  
Ashlyn E. Whitlock ◽  
Daniel F. Labuz ◽  
Ina Kycia ◽  
David Zurakowski ◽  
Dario O. Fauza
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Meredith Phelps ◽  
Alejandro Benjamin Balazs

HIV-1 broadly neutralizing antibodies (bNAbs) targeting the viral envelope have shown significant promise in both HIV prevention and viral clearance, including pivotal results against sensitive strains in the recent Antibody Mediated Prevention (AMP) trial. Studies of bNAb passive transfer in infected patients have demonstrated transient reduction of viral load at high concentrations that rebounds as bNAb is cleared from circulation. While neutralization is a crucial component of therapeutic efficacy, numerous studies have demonstrated that bNAbs can also mediate effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent complement deposition (ADCD). These functions have been shown to contribute towards protection in several models of HIV acquisition and in viral clearance during chronic infection, however the role of target epitope in facilitating these functions, as well as the contribution of individual innate functions in protection and viral clearance remain areas of active investigation. Despite their potential, the transient nature of antibody passive transfer limits the widespread use of bNAbs. To overcome this, we and others have demonstrated vectored antibody delivery capable of yielding long-lasting expression of bNAbs in vivo. Two clinical trials have shown that adeno-associated virus (AAV) delivery of bNAbs is safe and capable of sustained bNAb expression for over 18 months following a single intramuscular administration. Here, we review key concepts of effector functions mediated by bNAbs against HIV infection and the potential for vectored immunoprophylaxis as a means of producing bNAbs in patients.


Sign in / Sign up

Export Citation Format

Share Document