scholarly journals Optimization of Micro-Pollutants’ Removal from Wastewater Using Agricultural Waste-Derived Sustainable Adsorbent

Author(s):  
Areej Alhothali ◽  
Tahir Haneef ◽  
Muhammad Raza Ul Mustafa ◽  
Kawthar Mostafa Moria ◽  
Umer Rashid ◽  
...  

Water pollution due to the discharge of untreated industrial effluents is a serious environmental and public health issue. The presence of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) causes worldwide concern because of their mutagenic and carcinogenic effects on aquatic life, human beings, and the environment. PAHs are pervasive atmospheric compounds that cause nervous system damage, mental retardation, cancer, and renal kidney diseases. This research presents the first usage of palm kernel shell biochar (PKSB) (obtained from agricultural waste) for PAH removal from industrial wastewater (oil and gas wastewater/produced water). A batch scale study was conducted for the remediation of PAHs and chemical oxygen demand (COD) from produced water. The influence of operating parameters such as biochar dosage, pH, and contact time was optimized and validated using a response surface methodology (RSM). Under optimized conditions, i.e., biochar dosage 2.99 g L−1, pH 4.0, and contact time 208.89 min, 93.16% of PAHs and 97.84% of COD were predicted. However, under optimized conditions of independent variables, 95.34% of PAH and 98.21% of COD removal was obtained in the laboratory. The experimental data were fitted to the empirical second-order model of a suitable degree for the maximum removal of PAHs and COD by the biochar. ANOVA analysis showed a high coefficient of determination value (R2 = 0.97) and a reasonable second-order regression prediction. Additionally, the study also showed a comparative analysis of PKSB with previously used agricultural waste biochar for PAH and COD removal. The PKSB showed significantly higher removal efficiency than other types of biochar. The study also provides analysis on the reusability of PKSB for up to four cycles using two different methods. The methods reflected a significantly good performance for PAH and COD removal for up to two cycles. Hence, the study demonstrated a successful application of PKSB as a potential sustainable adsorbent for the removal of micro-pollutants from produced water.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rabia Baby ◽  
Bullo Saifullah ◽  
Mohd Zobir Hussein

AbstractHeavy metal contamination in water causes severe adverse effects on human health. Millions of tons of kernel shell are produced as waste from oil palm plantation every year. In this study, palm oil kernel shell (PKS), an agricultural waste is utilized as effective adsorbent for the removal of heavy metals, namely; Cr6+, Pb2+, Cd2+ and Zn2+ from water. Different parameters of adsorptions; solution pH, adsorbent dosage, metal ions concentration and contact time were optimized. The PKS was found to be effective in the adsorption of heavy metal ions Cr6+, Pb2+, Cd2+ and Zn2+ from water with percentage removal of 98.92%, 99.01%, 84.23% and 83.45%, respectively. The adsorption capacities for Cr6+, Pb2+, Cd2+ and Zn2+ were found to be 49.65 mg/g, 43.12 mg/g, 49.62 mg/g and 41.72 mg/g respectively. Kinetics of adsorption process were determined for each metal ion using different kinetic models like the pseudo-first order, pseudo-second order and parabolic diffusion models. For each metal ion the pseudo-second order model fitted well with correlation coefficient, R2 = 0.999. Different isotherm models, namely Freundlich and Langmuir were applied for the determination of adsorption interaction between metal ions and PKS. Adsorption capacity was also determined for each of the metal ions. PKS was found to be very effective adsorbent for the treatment of heavy metal contaminated water and short time of two hours is required for maximum adsorption. This is a comprehensive study almost all the parameters of adsorptions were studied in detail. This is a cost effective and greener approach to utilize the agricultural waste without any chemical treatment, making it user friendly adsorbent.


2019 ◽  
Vol 79 (7) ◽  
pp. 1357-1366 ◽  
Author(s):  
Rabia Boudia ◽  
Goussem Mimanne ◽  
Karim Benhabib ◽  
Laurence Pirault-Roy

Abstract This work concerns the elimination of the organic pollutant; Bemacid Red (BR), a rather persistent dye present in wastewater from the textile industry in western Algeria, by adsorption on carbon from an agricultural waste in the optimal conditions of the adsorption process. An active carbon was synthesized by treating an agro-alimentary waste, the date stones that are very abundant in Algeria, physically and chemically. Sample after activation (SAA) with phosphoric acid was highly efficient for the removal of BR. The characterization of this porous material has shown a specific surface area that exceeds 900 m2/g with the presence of mesopores. The iodine value also indicates that the activated carbon obtained has a large micro porosity. The reduction of the infrared spectroscopy (FTIR) bands reveals that the waste has been synthesized and activated in good conditions. Parameters influencing the adsorption process have been studied and optimized, such as contact time, adsorbent mass, solution pH, initial dye concentration and temperature. The results show that for a contact time of 60 min, a mass of 0.5 g and at room temperature, the adsorption rate of the BR by the SAA is at its maximum. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were studied to analyse adsorption kinetics. The result shows the adsorption kinetic is best with the pseudo-second-order model. In this study, Langmuir, Freundlich and Temkin isotherms were investigated for adsorption of BR onto SAA. The Freundlich and Temkin isotherms have the highest correlations coefficients. The suggested adsorption process involves multilayer adsorption with the creation of chemical bonds. The mechanism of adsorption of BR by SAA is spontaneous and exothermic, and the Gibbs free energy values confirm that the elimination of the textile dye follows a physisorption.


2013 ◽  
Vol 832 ◽  
pp. 810-815 ◽  
Author(s):  
M.S. Rosmi ◽  
S. Azhari ◽  
R. Ahmad

The use of low-cost adsorbent derived from agricultural waste has been investigated for the removal of Cd (II) from aqueous solution. This research reports the feasibility of using solid pineapple waste (SPW), sugarcane bagasse (SCB) and activated carbon (AC) derived from palm kernel for the removal of Cd (II) under different experimental conditions. Batch experiments were carried out at various pH (3-12), adsorbent dosage (0.01-2 g) and contact time (15-150 min). The maximum Cd (II) removal was shown by SPW (90%) followed by SCB (55%) and AC (30%) at pH 7 with a contact time of 120 min, adsorbent dosage of 1.0 g and at 1.0 ppm of the initial concentration of Cd (II) solution. The kinetics study shows that the adsorption process fitted the pseudo-second-order-model. The experimental data was analysed by both Freundlich and Langmuir isotherm models. It was found that the Langmuir model appears to well fit the isotherm. The Langmuir maximum adsorption capacity calculated from Langmuir for SPW, SBC and AC were 0.3332 mg/g, 0.1865 mg/g and 0.1576 mg/g respectively. The order of Cd (II) removal by the adsorbents was SPW>SCB>AC. Thus, SPW may be an alternative adsorbent for the removal of Cd (II) ions form aqueous solution. The characterization of the SPW, SCB and AC were also carried out by using Scanning Electron Microscopy (SEM) and Nitrogen Gas Adsorption Single Point Surface Area Analyzer (BET).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waheed Ali Khoso ◽  
Noor Haleem ◽  
Muhammad Anwar Baig ◽  
Yousuf Jamal

AbstractThe heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN’s, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3–7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


2017 ◽  
Vol 76 (12) ◽  
pp. 3278-3288 ◽  
Author(s):  
Zhenchao Zhang

Abstract In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H2O2 dosage of 12 mg/L, with a H2O2/Fe2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Suh Cem Pang ◽  
Lee Ken Voon ◽  
Suk Fun Chin

Various types of lignocellulosic biomass wastes (LBW) had been successfully converted into cello-oligomers with different chain lengths via a controlled depolymerization process. Cellulose fibres isolated from LBW samples were dissolved with room temperature ionic liquid (RTIL) in the presence of an acid catalyst, Amberlyst 15 DRY. The effects of reaction time on the degree of polymerization and yields of water-insoluble cello-oligomers formed were studied. Besides, the yields of water-soluble cello-oligomers such as glucose and xylose were also determined. The depolymerization of cellulose fibres isolated from LBW was observed to follow both second-order and pseudo-second order kinetics under specific conditions. As such, cello-oligomers of controllable chain lengths could be obtained by adjusting the duration of depolymerization process under optimized conditions.


2017 ◽  
Vol 9 (3) ◽  
pp. 85
Author(s):  
Iwekumo Agbozu ◽  
Bassey Uwem ◽  
Boisa Ndokiari

Removal of Zn, Pb, Cu and Fe ions from unspent and spent engine oil was studied using Termite soil. Process parameters such as contact time and adsorbent dosage were varied. Values from contact time were used for predicting kinetics equation of their uptake. At optimum time of 40 minutes, percentage adsorption was of the order Fe>Zn>Cu>Pb for both spent and unspent engine oil. Kinetics equation such as Elovich, Intra-particle, Pseudo-first order and Pseudo-second order were tested. Results obtained shows that their sequestering pattern fit into the pseudo-second order kinetics. Initial reaction rates, h (mg/g.min) and α (mg. g-1min-1) for all metal ions obtained from Pseudo-second order and Elovich kinetic models followed the trends Zn>Fe>Cu>Pb and Zn>Fe>Pb>Cu respectively in spent engine oil while for unspent engine oil, the trend was Fe>Zn>Cu>Pb for h (mg/g.min) and Zn>Fe>Pb>Cu for α (mg. g-1min-1). Electrostatic attraction existing on the surface of the adsorbent assisted in the high initial reaction of Zn and Fe ions, implying good affinity of the ions for the adsorbent. Desorption constant ᵦ (g/mg) was of the trend Cu>Pb>Fe>Zn and Cu>Pb>Zn>Fe for spent and unspent engine oils respectively. Intra-particle diffusion constant kid (mgg-1min-1/2) followed a similar pattern, revealing strong binding between Zn and termite soil than any of the metal ion. This pilot research has been able to suggest a kinetic process for uptake of the studied ions from spent and unspent engine oil.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


Author(s):  
Y. Yerima ◽  
I. Eiroboyi ◽  
I. Eiroboyi

Biomass-based activated carbon has received large attention due to its excellent characteristics such as inexpensiveness, good absorption behaviour, and potential to reduce strong dependence towards non-renewable precursors. The potential use of Palm Kernel Shell in modified activated carbon was evaluated by using the Response Surface Methodology. In this study, a 23 three-level Central Composite Design (CCD) was used to develop a statistical model for the optimization of process variables, contact time (10-130mins) X1, pH (5.0 – 8.0) X2, and adsorbent dose (0.4 -5.0g) X3. The investigation shows that Ethylene Di-Amine Tetra-Acetic Acid modified activated carbon prepared from Palm Kernel Shell is a promising adsorbent for the removal of copper ions from aqueous solutions over a wide range of concentrations with an optimized efficiency of 99% at the solution pH of 7.2, contact time of 70 minutes and adsorbent dose of 2.1g/L. The adsorption results are in line with the linear and quadratic model representation, which is evident from the models for optimization of copper ions.


Sign in / Sign up

Export Citation Format

Share Document