scholarly journals Zeroize: A New Method to Improve the Utilization of 5G Networks When Running VoIP over IPv6

2021 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Manjur Kolhar

5G technology is spreading extremely quickly. Many services, including Voice Over Internet Protocol (VoIP), have utilized the features of 5G technology to improve their performance. VoIP service is gradually ruling the telecommunication sector due to its various advantages (e.g., free calls). However, VoIP service wastes a substantial share of the VoIP 5G network’s bandwidth due to its lengthy packet header. For instance, the share of the packet header from bandwidth and channel time reaches 85.7% of VoIP 5G networks when using the IPv6 protocol. VoIP designers are exerting considerable efforts to solve this issue. This paper contributes to these efforts by designing a new technique named Zeroize (zero sizes). The core of the Zeroize technique is based on utilizing the unnecessary fields of the IPv6 protocol header to keep the packet payload (voice data), thereby reducing or “zeroizing” the payload of the VoIP packet. The Zeroize technique substantially reduces the expanded bandwidth of VoIP 5G networks, which is reflected in the wasted channel time. The results show that the Zeroize technique reduces the wasted bandwidth by 20% with the G.723.1 codec. Therefore, this technique successfully reduces the bandwidth and channel time of VoIP 5G networks when using the IPv6 protocol.

Author(s):  
Manjur Kolhar

5G technology propagation curve is ascending rapidly. 5G will open up the horizon to improve the performance of many other IP-based services such as voice over IP (VoIP). VoIP is a worldwide technology that is expected to rule the telecommunication world in the near future. However, VoIP has expended a significant part of the 5G technology bandwidth with no valuable use owing to its lengthy packet header. This issue even worsens when VoIP works in IPv6 networks, where the wasted bandwidth and airtime may reach 85.7% of 5G networks. VoIP developers have exerted many efforts to tackle this snag. This study adds to these efforts by proposing a new method called Zeroize (zero sizes). The main idea of the Zeroize method is to use superfluous fields of the IPv6 protocol header to carry the digital voice data of the packet and, thus, reduce or zeroize the VoIP packet payload. Although simple, the Zeroize method achieves a considerable reduction of the wasted bandwidth of 5G networks, which also directly affects the consumed airtime. The performance analysis of the Zeroize method shows that the consumed bandwidth is saved by 20% with the G.723.1 codec. Thus, the Zeroize method is a promising solution to reduce the wasted bandwidth and airtime of 5G networks when running VoIP over IPv6.


2021 ◽  
Vol 39 (1B) ◽  
pp. 209-221
Author(s):  
Raya W. Abd Aljabar ◽  
Nidaa F. Hassan

Voice over Internet Protocol (VoIP) calls are susceptible to interfere at many points by many attackers, thus encryption considered an important part in keeping VoIP. In this paper, Encryption VoIP based on Generated Biometric Key for RC4 Algorithm is proposed to encrypt the voice data before transmitting it over the network. The system uses a stream algorithm based on RC4 encryption with the new method of biometrics based Key generation technique. This system has generated complex keys in offline phase which is formed depend on features extracted using Linear Discernment Analysis (LDA) from face images. The experimental work shows that the proposed system offers secrecy to speech data with voice cipher is unintelligible and the recovered voice has perfect quality with MSR equal to zero and PSNR equal to infinity.


2018 ◽  
Vol 5 (2) ◽  
pp. 1-12
Author(s):  
Hadria Octavia

VoIP ( Voice over Internet Protocol ) is a technology used for communication in the form of IP based voice media over long distances. The concept of a VPN (Virtual Private Network) in this paper makes a client that is on the public network can be connected to a LAN network. To use the VoIP server in the Linux operating system Trixbox,  whereas for the VPN server using ClearOS and X-lite is used as a softphone to make calls to the client. Of testing at 64kbps bandwidth using the G711 codec produces value performance (delay, jitter, and packet loss ) is not good, so that voice data delivered is less clear. Thus the choice of bandwidth for the G.711 codec 512kbps up is the best solution to get the value of the performance (delay, jitter, and packet loss) better . And a choice of 3 Greed (low, medium, high) on setting bandwidth, high is the best option. Because it can produce the best performance for VoIP VPN technology.


Author(s):  
Manjur Kolhar

Timeworn telecommunication are progressively being substituted by a new one that run over IP networks, which is recognized as voice over internet protocol (VoIP). VoIP has a number of qualities (e.g., inexpensive call rate), which make it progressively widespread in the telecommunication domain. However, VoIP faces plentiful obstacles that slow its growth. One of the major obstacles is poorly utilizing the network bandwidth. A number of techniques have been offered to handle this obstacle, including packet multiplexing techniques. This paper designs an original multiplexing techniques, called packet multiplexing and carrier header (PM-CH), to decrease the quantity of the bandwidth consumed by VoIP. PM-CH protect the bandwidth by multiplexing the packets in a header and using the Timestamp field in the RTP header. The achievement of the PM-CH technique was examined depends on connection capacity and payload shortening. Simulation outcomes show that the PM-CH technique outperforms the contrast technique in the two factors. For instance, the PM-CH technique’s connection capacity outperforms the comparable technique by 58.9% when the connection bandwidth is 1000 kbps. Consequently, the PM-CH technique attains its objective of reducing the unexploited bandwidth caused by VoIP.


Author(s):  
J. Hanson

A long-held desire on the part of many concerned technologists and social scientists has been the creation of a system that would allow individuals in the remotest regions of the globe to have access to communications technologies. Today, Voice over Internet Protocol (VoIP) allows individuals in regions formerly restricted by economic, geographic or cultural reasons to communicate on a broader scale at a reasonable financial cost, through convergent systems and wireless means, for purposes defined by themselves. This analysis explains the core components of VoIP and how it facilitates communication, considers the social and cultural impact of VoIP on a global scale and examines whether we are entering a truly “global village” through greater use of VoIP technologies.


Author(s):  
Esra Musbah Mohammed Musbah ◽  
Khalid Hamed Bilal ◽  
Amin Babiker A. Nabi Mustafa

VoIP stands for voice over internet protocol. It is one of the most widely used technologies. It enables users to send and transmit media over IP network. The transition from IPv4 to IPv6 provides many benefits for internet IPv6 is more efficient than IPv4. This paper presents a performance analysis of VoIP over WLAN using IPv4 and IPv6 and OPNET software program to simulate the protocols and to investigate the QoS parameters such as jitter, delay variation, packet send, and packet received and throughputs for IP4 and IP6 and compare between them.


Sign in / Sign up

Export Citation Format

Share Document