chloroplast movement
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 3)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Young-Sun Riu ◽  
Hyun-Geun Song ◽  
Hwi-Su Kim ◽  
Sam-Geun Kong

Phototropins (phot1 and phot2) are plant-specific blue light receptors that mediate chloroplast movement, stomatal opening, and phototropism. Phototropin is composed of the N-terminus LOV1 and LOV2 domains and the C-terminus Ser/Thr kinase domain. In previous studies, 35-P2CG transgenic plants expressing the phot2 C-terminal fragment–GFP fusion protein (P2CG) under the control of 35S promoter showed constitutive phot2 responses, including chloroplast avoidance response, stomatal opening, and reduced hypocotyl phototropism regardless of blue light, and some detrimental growth phenotypes. In this study, to exclude the detrimental growth phenotypes caused by the ectopic expression of P2C and to improve leaf transpiration, we used the PHOT2 promoter for the endogenous expression of GFP-fused P2C (GP2C) (P2-GP2C) and the BLUS1 promoter for the guard-cell-specific expression of GP2C (B1-GP2C), respectively. In P2-GP2C plants, GP2C expression induced constitutive phototropin responses and a relatively dwarf phenotype as in 35-P2CG plants. In contrast, B1-GP2C plants showed the guard-cell-specific P2C expression that induced constitutive stomatal opening with normal phototropism, chloroplast movement, and growth phenotype. Interestingly, leaf transpiration was significantly improved in B1-GP2C plants compared to that in P2-GP2C plants and WT. Taken together, this transgenic approach could be applied to improve leaf transpiration in indoor plants.


2021 ◽  
Author(s):  
Zachary Savage ◽  
Jessica L. Erickson ◽  
Jennifer Prautsch ◽  
Andrada I. Balmez ◽  
Yasin Tumtas ◽  
...  

When a plant detects a pathogen, chloroplasts terminate photosynthetic activity and uptake vital roles in the immune system to help stave off infection, including the production of defense hormone precursors and antimicrobial reactive oxygen species. Additionally, chloroplasts associate with the nucleus and produce greater numbers of tubular extensions called stromules during immune challenge. We previously showed that during infection by the potato blight pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen haustoria, hyphal extensions that are accommodated within the host cell. However, the extent to which chloroplast positioning around haustoria, or at the nucleus, contributes to immunity during infection remains unknown. Here we show a striking increase in the susceptibility to P. infestans of Nicotiana benthamiana CRISPR knock-out lines lacking the chloroplast movement and anchoring gene, CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1). However, the positioning of chloroplasts around the haustorium or nucleus is not impaired in the absence of CHUP1. Further, loss of CHUP1 leads to an extreme clustering of chloroplasts around the nucleus in the presence and absence of infection, showing that greater chloroplast-nucleus association does not necessarily equate to more robust immunity. While plants lacking CHUP1 have reduced basal stromules, they are still able to induce stromules following immune stimulation, indicating that multiple populations of stromules exist. Lastly, we found that CHUP1 is required for proper deposition of callose - a cell wall material implicated in pathogen penetration resistance - around P. infestans haustorium, but not for other core immune processes. Our results implicate chloroplasts in plant focal immunity and point to a key role of CHUP1 in facilitating the deposition of defense material at the pathogen interface.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Wang ◽  
Yu-ping Liang ◽  
Jin-dong Zhu ◽  
Yu-xi Wang ◽  
Meng-ya Yang ◽  
...  

Phototropins, namely, phototropin 1 (phot1) and phototropin 2 (phot2), mediate chloroplast movement to maximize photosynthetic efficiency and prevent photodamage in plants. Phot1 primarily functions in chloroplast accumulation process, whereas phot2 mediates both chloroplast avoidance and accumulation responses. The avoidance response of phot2-mediated chloroplasts under high-intensity blue light (HBL) limited the understanding of the function of phot1 in the chloroplast accumulation process at the HBL condition. In this study, we showed that the phot2 mutant exhibits a chloroplast accumulation response under HBL, which is defective when the root phototropism 2 (RPT2) gene is mutated in the phot2 background, mimicking the phenotype of the phot1 phot2 double mutant. A further analysis revealed that the expression of RPT2 was induced by HBL and the overexpression of RPT2 could partially enhance the chloroplast accumulation response under HBL. These results confirmed that RPT2 also participates in regulating the phot1-mediated chloroplast accumulation response under HBL. In contrast, RPT2 functions redundantly with neural retina leucine zipper (NRL) protein for chloroplast movement 1 (NCH1) under low-light irradiation. In addition, no chloroplast accumulation response was detected in the phot2 jac1 double mutant under HBL, which has been previously observed in phot2 rpt2 and phot1 phot2 double mutants. Taken together, our results indicated that phot1 mediates the HBL-induced chloroplast accumulation response in an RPT2-dependent manner and is also regulated by j-domain protein required for chloroplast accumulation response 1 (JAC1).


2021 ◽  
Author(s):  
Matthew E Dwyer ◽  
Roger P. Hangarter

Light-dependent chloroplast movements in leaf cells contribute to the optimization of photosynthesis. Low light conditions induce chloroplast accumulation along periclinal cell surfaces, providing greater access to the available light, whereas high light induces movement of chloroplasts to anticlinal cell surfaces providing photodamage protection and allowing more light to reach underlying cell layers. The THRUMIN1 protein is required for normal chloroplast movements in Arabidopsis thaliana and has been shown to localize at the plasma membrane and to undergo rapid light-dependent interactions with actin filaments through the N-terminal intrinsically disordered region. A predicted WASP-Homology 2 (WH2) domain was found in the intrinsically disordered region but mutations in this domain did not disrupt localization of THRUMIN1:YFP to actin filaments. A series of other protein truncations and site-directed mutations of known and putative phosphorylation sites indicated that a phosphomimetic mutation (serine to aspartic acid) at position 170 disrupted localization of THRUMIN1 with actin filaments. However, the phosphomimetic mutant rescued the thrumin1-2 mutant phenotype for chloroplast movement and raises questions about the role of THRUMIN1's interaction with actin. Mutation of serine 146 to aspartic acid also resulted in cytoplasmic localization of THRUMIN1:YFP in Nicotiana benthamiana. Mutations to a group of putative zinc-binding cysteine clusters implicates the C-terminus of THRUMIN1 in chloroplast movement. Phosphorylation-dependent association of THRUMIN1 with 14-3-3 KAPPA and OMEGA were also identified. Together, these studies provide new insights into the mechanistic role of THRUMIN1 in light-dependent chloroplast movements.


2021 ◽  
Vol 64 (6) ◽  
pp. 1747-1754
Author(s):  
Yohsuke Inagaki ◽  
Rina Akune ◽  
Ayano Matsuda ◽  
Shinichiro Kuroki ◽  
Kenji Takisawa ◽  
...  

HighlightsThis study investigates the use of laser speckle to evaluate chloroplast movement in plant cells.The analysis value of the laser speckle corresponds to chloroplast movement.The run-length matrix analysis that we propose is more sensitive than existing methods.Abstract. Abiotic and biotic stresses change the cytoplasmic streaming in plant cells. In particular, the state of chloroplast movement changes rapidly in response to environmental changes. Thus, detecting chloroplast movement allows us to comprehend the physiological state of plants. This study investigated the applicability of the laser speckle method for evaluating chloroplast movement. Moreover, we propose a new analysis method for sensitively evaluating chloroplast movement. Leaves of Egeria densa were used, and electrical stimulation was applied as recoverable abiotic stress. Laser speckle measurement and light microscopic observation of the same specimen were performed before and after stimulation. The results showed that the laser speckle method can nondestructively evaluate macroscopic and collective chloroplast movement. The proposed method was more sensitive to chloroplast movement than existing methods. Keywords: Chloroplast, Image processing, Laser speckle, Textual analysis.


2020 ◽  
Vol 107 (9) ◽  
pp. 1309-1318
Author(s):  
Mia M. Howard ◽  
Andrea Bae ◽  
Zahra Pirani ◽  
Nhi Van ◽  
Martina Königer

2020 ◽  
Author(s):  
Sam-Geun Kong ◽  
Atsushi Shimada ◽  
Saku T. Kijima ◽  
Keiko Hirose ◽  
Kaoru Katoh ◽  
...  

SUMMARYPlants have evolved unique responses to fluctuating light conditions in their environment. One such response, chloroplast photorelocation movement, optimizes photosynthesis under weak light and prevents photodamage under strong light. CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) plays a pivotal role in the light-responsive chloroplast movements, which are driven by dynamic reorganization of chloroplast actin (cp-actin) filaments. In this study, we demonstrated that fluorescently tagged CHUP1 colocalized and was coordinately reorganized with cp-actin filaments during chloroplast movement in Arabidopsis thaliana. The resulting asymmetric distribution of CHUP1 was reversibly regulated by the blue light receptor phototropin. X-ray crystallography indicated that the CHUP1 C-terminal domain shares structural similarity with the formin homology 2 (FH2) domain, although there is no sequence similarity between the two domains. The CHUP1 C-terminal domain stimulated actin polymerization in the presence of profilin. We conclude that CHUP1 is a novel, plant-specific actin nucleator that functions in cp-actin-based chloroplast movement.HighlightsBlue light changes the distribution pattern of CHUP1Formin FH2 and CHUP1 C-terminal domains are structurally similar but not homologousCHUP1 nucleates and severs actin filaments in vitroCHUP1 is a novel, plant-specific actin nucleator for chloroplast movement


Sign in / Sign up

Export Citation Format

Share Document