seismic frequencies
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 40 (9) ◽  
pp. 655-661
Author(s):  
Alexey Yurikov ◽  
Roman Pevzner ◽  
Konstantin Tertyshnikov ◽  
Vassily Mikhaltsevitch ◽  
Boris Gurevich ◽  
...  

Forced-oscillation stress-strain laboratory measurements are increasingly employed to obtain elastic and viscoelastic properties of rocks at seismic frequencies. Yet these measurements are time-consuming and expensive, due in part to the use of metal or semiconductor strain gauges, which need to be glued to the sample. Such gauges are fragile, have relatively low sensitivity, and measure very local strain only so the measurements can be affected by a slight misalignment of the system assembly and local heterogeneity of the rock. The emergence of fiber-optic distributed acoustic sensing (DAS) technology provides an alternative means of measuring strain. Strain measurements with DAS involve winding an optical fiber around the sample multiple times and connecting it to a DAS recording unit. Pilot experiments performed using this setup on a range of rocks and materials show good agreement with strain gauge measurements. Advantages of DAS over strain gauges include much higher strain sensitivity (down to 10−11) and signal-to-noise ratio (and hence, shorter time required for measurements), larger dynamic range, ability to measure average (rather than local) strain in the sample, and robustness at elevated temperatures. Although the pilot experiments demonstrate the potential of DAS for rock physics measurements, further research and improvement of the proposed methodology are required to obtain independent estimates of Young's modulus and Poisson's ratio and to port the system into a pressure vessel to obtain rock properties under in-situ conditions.



2021 ◽  
pp. 1-8
Author(s):  
Ranjith Kunnath

Abstract Conventional models of the structure of the earth, such as the Preliminary Reference Earth Model (PREM), assume a bonded interface between the crust and the upper mantle. The bonded contact model is consistent with the observation of Love waves during an earthquake. However, anomalies in the Love wave dispersion have been reported in the literature. When slip occurs at the crust-mantle interface, another kind of an interfacial wave, called the slip wave can exist. It is shown that the dispersion relation of the slip wave, with a slip weakening friction law, appears to be in agreement with the observations at seismic frequencies. This suggests that slip could occur at the crust-mantle interface.



Author(s):  
Congcong Yuan ◽  
Jared Bryan ◽  
Marine Denolle

Summary Temporal changes in subsurface properties, such as seismic wavespeeds, can be monitored by measuring phase shifts in the coda of two seismic waveforms that share a similar source-receiver path but that are recorded at different times. These nearly identical seismic waveforms are usually obtained either from repeated earthquake waveforms or from repeated ambient noise cross-correlations. The five algorithms that are the most popular to measure phase shifts in the coda waves are the Windowed Cross Correlation (WCC), Trace Stretching (TS), Dynamic Time Warping (DTW), Moving Window Cross Spectrum (MWCS), and Wavelet Cross Spectrum (WCS). The seismic wavespeed perturbation is then obtained from the linear regression of phase shifts with their respective lag times under the assumption that the velocity perturbation is homogeneous between (virtual or active) source and receiver. We categorize these methods into the time domain (WCC, TS, DTW), frequency domain (MWCS), and wavelet domain (WCS). This study complements this suite of algorithms with two additional wavelet-domain methods, which we call Wavelet Transform Stretching (WTS) and Wavelet Transform Dynamic Time Warping (WTDTW), wherein we apply traditional stretching and dynamic time warping techniques to the wavelet transform. This work aims to verify, validate, and test the accuracy and performance of all methods by performing numerical experiments, in which the elastic wavefields are solved for in various 2D heterogeneous halfspace geometries. Through this work, we validate the assumption of a linear increase in phase shifts with respect to phase lags as a valid argument for fully homogeneous and laterally homogeneous velocity changes. Additionally, we investigate the sensitivity of coda waves at various seismic frequencies to the depth of the velocity perturbation. Overall, we conclude that seismic wavefields generated and recorded at the surface lose sensitivity rapidly with increasing depth of the velocity change for all source-receiver offsets. However, measurements made over a spectrum of seismic frequencies exhibit a pattern such that wavelet methods, and especially WTS, provide useful information to infer the depth of the velocity changes.



2021 ◽  
Vol 9 ◽  
Author(s):  
Vassily Mikhaltsevitch ◽  
Maxim Lebedev ◽  
Rafael Chavez ◽  
Euripedes A. Vargas ◽  
Guilherme F. Vasquez

In presented paper, we describe the technical and physical aspects of the application of a low-frequency (LF) apparatus based on a longitudinal type of forced oscillations. In particular, we investigate the influence of the strain gauge position on a tested sample on measurement results, we also examine the creep effect associated with the mineralogy of rocks, as well as the dispersion and attenuation in a liquid-saturated rock sample caused by the presence of the volume of pore fluid exterior to the sample (dead volume). The effect of the position of the strain gauges is investigated using a cylindrical acrylic sample and two pairs of strain gauges fixed in the middle and at one of the sample ends under a uniaxial pressure of 15 MPa. The obtained results demonstrate that elastic and anelastic parameters of the tested sample are independent from the location of the strain gauges. The impact of the creep phenomenon on elastic moduli was studied using three room-dry samples of Savonnieres limestone, Berea sandstone and Eagle Ford shale. The measurements were conducted for 120 h at a frequency of 2 Hz under a uniaxial pressure of 10 MPa and demonstrated that the LF moduli of all rocks were noticeably reduced with time. The effect of dead volume was investigated at seismic frequencies using limestone saturated with n-decane. It was found that the Young’s and bulk moduli exhibit strong dispersion at frequencies above 10 Hz if the dead volume is close to or greater than the pore volume of the sample. We also found that the characteristic frequency of dispersion corresponding to the attenuation peak is independent of the size of the dead volume and determined only by the physical parameters of the sample and pore fluid. We present also the results of the Young’s modulus and attenuation measurements conducted at seismic frequencies on vertical and horizontal shale samples saturated with water. It was shown that the relationship between the extensional attenuation and the Young’s modulus dispersion observed in the samples saturated at a relative humidity of 97.5% is consistent with the Kramers–Kronig relation.



2021 ◽  
Author(s):  
Ranjith Kunnath

<p>A model that explains the anomalies in the Love wave dispersion in the earth is presented. Conventionally, welded contact between the crust and the upper mantle is assumed, leading to Love wave generation when the earth is excited. However, the observations of SH wave dispersion at seismic frequencies is at variance with this model, at least for some crustal plates (Ekström, 2011). When frictional slip occurs at the crust-upper mantle interface, a new type of interfacial elastic wave called the antiplane slip wave can occur (Ranjith, 2017). It is shown that the antiplane slip waves can explain the observed anomalies in the Love wave dispersion. </p>



2021 ◽  
Author(s):  
A. Yurikov ◽  
M. Lebedev ◽  
R. Pevzner ◽  
K. Tertyshnikov ◽  
V. Mikhaltsevich


2020 ◽  
Author(s):  
H. Yin ◽  
J.V.M. Borgomano ◽  
S. Wang ◽  
M. Tiennot ◽  
J. Fortin ◽  
...  


2019 ◽  
Vol 23 (4) ◽  
pp. 359-364
Author(s):  
Yunlan He ◽  
Xikai Wang ◽  
Hongjie Sun ◽  
Zhenguo Xing ◽  
Shan Chong ◽  
...  

To identify the lithology of coal seam roof and explore the influence of these roofs on the enrichment of coalbed methane, low-frequency rock petrophysics experiments, seismic analyses and gas-bearing trend analyses were performed. The results show that the sound wave propagation speed in rock at seismic frequencies was lower than that at ultrasound frequencies. Additionally, the P-wave velocities of gritstone, fine sandstone, argillaceous siltstone and mudstone were 1,651 m/s, 2,840 m/s, 3,191 m/s and 4,214 m/s, respectively. The surface properties of the coal seam roofs were extracted through 3D seismic wave impedance inversion. The theoretical P-wave impedance was calculated after the tested P-wave velocity was determined. By matching the theoretical P-wave impedance of the four types of rocks with that of the coal seam roofs, we identified the lithology of the roofs. By analyzing known borehole data, we found that the identified lithology was consistent with that revealed by the data. By comparing and analyzing the coal seam roof lithology and the gas-bearing trends in the study area, we discovered that the coal seam roof lithology was related to the enrichment of coalbed methane. In the study area, areas with high gas contents mainly coincided with roof zones composed of mudstone and argillaceous siltstone, and those with low gas contents were mainly associated with fine sandstone roof areas. Thus, highly compact areas of coal seam roof are favorable for the formation and preservation of coalbed methane. 



2019 ◽  
Vol 124 (2) ◽  
pp. 1254-1272 ◽  
Author(s):  
Hanjun Yin ◽  
Jan V. M. Borgomano ◽  
Shangxu Wang ◽  
Mathilde Tiennot ◽  
Jérôme Fortin ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document