polysulfide polymer
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3347
Author(s):  
Anureet Kaur ◽  
Julien E. Gautrot ◽  
Gabriele Cavalli ◽  
Douglas Watson ◽  
Alan Bickley ◽  
...  

The introduction of dynamic bonds capable of mediating self-healing in a fully cross-linked polychloroprene network can only occur if the reversible moieties are carried by the cross-linker itself or within the main polymer backbone. Conventional cross-linking is not suitable for such a purpose. In the present work, a method to develop a self-healable and recyclable polychloroprene rubber is presented. Dynamic disulfide bonds are introduced as part of the structure of a crosslinker (liquid polysulfide polymer, Thiokol LP3) coupled to the polymer backbone via thermally initiated thiol-ene reaction. The curing and kinetic parameters were determined by isothermal differential scanning calorimetry and by moving die rheometer analysis; tensile testing was carried to compare the tensile strength of cured compound, healed compounds and recycled compounds, while chemical analysis was conducted by surface X-Ray Photoelectron Spectroscopy. Three formulations with increasing concentrations of Thiokol LP-3 were studied (2, 4, 6 phr), reaching a maximum ultimate tensile strength of 22.4 MPa and ultimate tensile strain of 16.2 with 2 phr of Thiokol LP-3, 11.7 MPa and 10.7 strain with 4 phr and 5.6 MPa and 7.3 strain with 6 phr. The best healing efficiencies were obtained after 24 h of healing at 80 °C, increasing with the concentration of Thiokol LP-3, reaching maximum values of 4.5% 4.4% 13.4% with 2 phr, 4 phr and 6 phr, respectively, while the highest recycling efficiency was obtained with 4 phr of Thiokol LP-3, reaching 11.2%.


2020 ◽  
Author(s):  
Israa Bu Najmah ◽  
Nicholas Lundquist ◽  
Melissa K. Stanfield ◽  
Filip Stojcevski ◽  
Jonathan A. Campbell ◽  
...  

An insulating composite was made from the sustainable building blocks wool, sulfur, and canola oil. In the first stage of the synthesis, inverse vulcanization was used to make a polysulfide polymer from the canola oil triglyceride and sulfur. This polymerization benefits from complete atom economy. In the second stage, the powdered polymer is mixed with wool, coating the fibers through electrostatic attraction. The polymer and wool mixture is then compressed with mild heating to provoke S-S metathesis in the polymer, which locks the wool in the polymer matrix. The wool fibers impart tensile strength, insulating properties, and flame resistance to the composite. All building blocks are sustainable or derived from waste and the composite is a promising lead on next-generation insulation for energy conservation.


2020 ◽  
Author(s):  
Israa Bu Najmah ◽  
Nicholas Lundquist ◽  
Melissa K. Stanfield ◽  
Filip Stojcevski ◽  
Jonathan A. Campbell ◽  
...  

An insulating composite was made from the sustainable building blocks wool, sulfur, and canola oil. In the first stage of the synthesis, inverse vulcanization was used to make a polysulfide polymer from the canola oil triglyceride and sulfur. This polymerization benefits from complete atom economy. In the second stage, the powdered polymer is mixed with wool, coating the fibers through electrostatic attraction. The polymer and wool mixture is then compressed with mild heating to provoke S-S metathesis in the polymer, which locks the wool in the polymer matrix. The wool fibers impart tensile strength, insulating properties, and flame resistance to the composite. All building blocks are sustainable or derived from waste and the composite is a promising lead on next-generation insulation for energy conservation.


Nano Research ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Zhenxing Li ◽  
Jianzheng Zhang ◽  
Mingming Li ◽  
Xiaofei Xing ◽  
Qiuyu Zhang

Sign in / Sign up

Export Citation Format

Share Document