soil acid phosphatase
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Liu ◽  
Sasa Xie ◽  
Xiaowen Zhao ◽  
Yue Liu ◽  
Yuanjun Xing ◽  
...  

Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1321
Author(s):  
Ziqi Fu ◽  
Qin Chen ◽  
Pifeng Lei ◽  
Wenhua Xiang ◽  
Shuai Ouyang ◽  
...  

The majority of studies have found that an increase in tree species diversity can increase the productivity of forest stands thanks to complimentary effects with enhanced resource use efficiency or selection effects; however, it is unclear how tree species diversity affects the soil fungal community and enzyme activities in subtropical evergreen forests. In this study, we used soil high-throughput sequencing to investigate the soil fungal community structure and diversity in the central area of tree clusters in the gradient of tree species richness formed by four possible dominant tree species (Pinus massoniana Lamb., Choerospondias axillaris Roxb., Cyclobalanopsis glauca Thunb. and Lithocarpus glaber Thunb.) in subtropical evergreen broad-leaved forest. The results showed that soil organic carbon content and total nitrogen content were significantly higher in mixed tree clusters, and that soil fungal richness and diversity increased with the increase in tree species diversity (1–3 species). Soil acid phosphatase and urease activity were also enhanced with tree species diversity (p < 0.05). The relative abundance of soil symbiotic fungi (ectomycorrhizal fungi) decreased, while the relative abundance of saprotrophic fungi increased. Redundancy analysis (RDA) revealed that soil acid phosphatase activity was the main factor affecting soil fungal communities and functional guilds, and that soil water content was the main driving force behind fungal trophic modes. In subtropical forests, changes in tree species diversity have altered the soil fungal community structure and trophic modes and functions, accelerating the decomposition of organic matter, increasing nutrient cycling, and perhaps also changing the nutrient absorption of trees.


2018 ◽  
Vol 147 ◽  
pp. 266-274 ◽  
Author(s):  
Ziquan Wang ◽  
Xiangping Tan ◽  
Guannan Lu ◽  
Yanju Liu ◽  
Ravi Naidu ◽  
...  

2017 ◽  
Vol 68 (4) ◽  
pp. 305 ◽  
Author(s):  
Alex Seguel ◽  
Pablo Cornejo ◽  
Ariel Ramos ◽  
Erik Von Baer ◽  
Jonathan Cumming ◽  
...  

Phosphorus (P) deficiency and aluminium (Al) phytotoxicity are major limitations for crop yield in acid soils. To ameliorate such limitations, agricultural management includes application of lime and P fertilisers, and the use of Al-tolerant plant genotypes. The mechanisms of Al tolerance and P efficiency may be closely related through strategies that decrease the toxicity of the Al3+ ion and increase P availability in soils. However, the effects of soils with high Al saturation on P acquisition by wheat have been little studied under field conditions. The aim of this work was to study Al–P interactions on wheat genotypes of contrasting Al tolerance when grown under field conditions in a volcanic soil with high Al saturation (32%) and low pH (5.0). A field-plot experiment was performed with winter wheat genotypes, two Al-tolerant (TCRB14 and TINB14) and one Al-sensitive (STKI14), with application of 0, 44 and 88 kg P ha–1. At the end of tillering and after physiological maturity (90 and 210 days after sowing), plants were harvested and yield and P and Al concentrations in shoots and roots were measured. Soil acid phosphatase, root arbuscular mycorrhizal (AM) colonisation, AM spore number and soil glomalin were determined. Shoot and root production and P uptake were higher in Al-tolerant genotypes than the sensitive genotype. In addition, root AM colonisation and soil acid phosphatase activity were also higher in tolerant genotypes. By contrast, Al concentration in shoots and roots was higher in the sensitive genotype with a concomitant decrease in P concentration. Grain yield of Al-tolerant genotypes was higher than of the Al-sensitive genotype with and without P fertiliser. Overall, the Al-tolerant genotypes were more effective at P acquisition from soil as well as from P fertiliser added, suggesting that plant traits such as Al tolerance, P efficiency, and AM colonisation potential co-operate in overcoming adverse acid soil conditions.


2014 ◽  
Vol 68 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Barbara Kieliszewska-Rokicka

The relations between anthropogenic environmental pollution and the level of inorganic phosphorus in soil, enzyme activities of extracellular soil acid phosphatase and the surface acid phosphatase of excised ectomycorrhizas of Scots pine (<em>Pinus sylvestris</em> L.) were studied. Soil and root samples were taken from two Scots pine stands in central Poland: a polluted site exposed to long-term pollution from a steelworks and the city of Warsaw and a reference plot (control) free from direct impact of pollution. The polluted site was characterised by high concentration of trace elements (Cd, Pb, Cu, Zn, Mn, Cr) and low level of inorganic phosphate in soil. This site had significantly lower enzyme activities of soil acid phosphatase (0.54 µmoles <em>p</em>-nitrophenol released g<sup>-1</sup> dry weight h<sup>-1</sup>) and surface acid phosphatase of pine ectomycorrhizas (3.37 µmoles <em>p</em>-nitrophenol released g<sup>-1</sup> fresh weight h<sup>-1</sup>) than the control site (1.36 µmoles <em>p</em>-nitrophenol released g<sup>-1</sup> dry weight h<sup>-1</sup> and 12.46 µmoles <em>p</em>-nitrophenol released g<sup>-1</sup> fresh weight h<sup>-1</sup>, respectively). The levels of phosphate, carbon and nitrogen in pine fine roots were also analysed. Low concentrations of P0<sub>4</sub>-P and high N: P ratio in pine fine roots from polluted site were found. The results suggest that soil pollutants may have a negative effect on the extracellular acid phosphatase of soil and Scots pine ectomycorrhizas and on the phosphorus status in fine roots of the plant.


2012 ◽  
Vol 32 (4) ◽  
pp. 736-744 ◽  
Author(s):  
João J. da Silva Júnior ◽  
Eugênio F. Coelho ◽  
José A. do V. Sant'Ana ◽  
Adriana M. de A. Accioly

The study aimed to evaluate chemical, microbiological and hydro-physical changes of a Dystrophic Yellow Latosol, receiver of different levels of manipueira (cassava wastewater) application, in the cultivation of 'Terra Maranhão' banana. The experimental design was a randomized block with three replications in a factorial scheme 3 x 4, in which it was considered three soil depths and four levels of manipueira. It was evaluated the weighted mean diameter of the aggregate, the percentage of aggregation at different periods, soil density, particle density, porosity and soil saturated hydraulic conductivity, in addition to pH of P (mg dm -3), K (mg dm-3), Ca (cmolc dm-3), Mg (cmolc dm-3), Ca+Mg (cmolc dm-3), Al (cmolc dm-3), Na (cmolc dm -3), H+Al (cmolc dm-3), CEC (cmolc dm-3), V%, OM (g kg-1), soil microbial biomass (Ug Cg-1 dry soil), acid phosphatase (Ug PNP g-1 h-1). The use of manipueira influenced some physical characteristic of the soil, but it was not possible to specify the effect of increasing application dosage. Therefore, the application did not affect the biological indicators assessed in the soil or its pH. The use of manipueira as a fertilizer in the doses used in this study showed low increase of K, P, H+Al and Al in the soil and a good increase of Mg, Ca and Ca+Mg, Na, CEC and V%.


2011 ◽  
Vol 8 (7) ◽  
pp. 1901-1910 ◽  
Author(s):  
W. Huang ◽  
J. Liu ◽  
G. Zhou ◽  
D. Zhang ◽  
Q. Deng

Abstract. Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.


2011 ◽  
Vol 8 (1) ◽  
pp. 157-183
Author(s):  
W. Huang ◽  
J. Liu ◽  
G. Zhou ◽  
D. Zhang ◽  
Q. Deng

Abstract. Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.


2007 ◽  
Vol 8 (7) ◽  
pp. 1157-1163 ◽  
Author(s):  
Dong-mei Xu ◽  
Bo Chen ◽  
Wen-li Liu ◽  
Guang-shen Liu ◽  
Wei-ping Liu

Sign in / Sign up

Export Citation Format

Share Document