Multi-Fluid Effects in Magnetohydrodynamics

Author(s):  
Elena Khomenko

Multi-fluid magnetohydrodynamics is an extension of classical magnetohydrodynamics that allows a simplified treatment plasmas with complex chemical mixtures. The types of plasma susceptible to multi-fluid effects are those containing particles with properties significantly different from those of the rest of the plasma in either mass, or electric charge, such as neutral particles, molecules, or dust grains. In astrophysics, multi-fluid magnetohydrodynamics is relevant for planetary ionospheres and magnetospheres, the interstellar medium, and the formation of stars and planets, as well as in the atmospheres of cool stars such as the Sun. Traditionally, magnetohydrodynamics has been a classical approximation in many astrophysical and physical applications. Magnetohydrodynamics works well in dense plasmas where the typical plasma scales (e.g., cyclotron frequencies, Larmor radius) are significantly smaller than the scales of the processes under study. Nevertheless, when plasma components are not well coupled by collisions it is necessary to replace single-fluid magnetohydrodynamics by multi-fluid theory. The present article provides a description of environments in which a multi-fluid treatment is necessary and describes modifications to the magnetohydrodynamic equations that are necessary to treat non-ideal plasmas. It also summarizes the physical consequences of major multi-fluid non-ideal magnetohydrodynamic effects including ambipolar diffusion, the Hall effect, the battery effect, and other intrinsically multi-fluid effects. Multi-fluid theory is an intermediate step between magnetohydrodynamics dealing with the collective behaviour of an ensemble of particles, and a kinetic approach where the statistics of particle distributions are studied. The main assumption of multi-fluid theory is that each individual ensemble of particles behaves like a fluid, interacting via collisions with other particle ensembles, such as those belonging to different chemical species or ionization states. Collisional interaction creates a relative macroscopic motion between different plasma components, which, on larger scales, results in the non-ideal behaviour of such plasmas. The non-ideal effects discussed here manifest themselves in plasmas at relatively low temperatures and low densities.

1998 ◽  
Vol 60 (1) ◽  
pp. 65-68
Author(s):  
M. FAGHIHI ◽  
F. EBRAHIMI

The effect of a large ion Larmor radius on the Rayleigh–Taylor instability is investigated using the Vlasov fluid model. The results are compared with an ideal magnetohydrodynamic model. It is found that this effect reduces the growth rate of the Rayleigh–Taylor instability with respect to the ideal magnetohydrodynamic growth rate.


1972 ◽  
Vol 8 (3) ◽  
pp. 393-400 ◽  
Author(s):  
F. Herrnegger

The dispersion relation for gravitational instability has been given within the framework of a two-fluid theory. It has been shown that the Jeans criterion is changed by finite Larmor radius and by collisions for waves propagating perpendicular to the magnetic field. The critical wavenumber for instability decreases with increasing Alfvén velocity and with increasing gyroviscosity. Instability does not set in with overstabiity.


1987 ◽  
Vol 98 ◽  
Author(s):  
Peter R. Strutt ◽  
Julian P. Partridge

ABSTRACTInteresting possibilities exist for the scientific design of materials with optimized properties for a diversity of technological applications. For example, the reduction of severe wear and erosion in critical turbine and engine components requires basic studies of intrinsic strengthening, where loads are uniformly transferred across interphase inter-faces. The acheivement of this requires a developed capability for producing selected morphologies on the (i) macro, (ii) micro, and (iii) nanoscale. This involves using a combination of techniques that include the deposition of one, or more, atomic or molecular species in gaseous environments. Recent discoveries suggest, in fact, that it is feasible to design layers where the chemistry and structure at any depth can be pre-selected. Such a capability offers exciting opportunities for forming ‘graded property’ materials, as required in mechanical component and fiber-optic applications. Here, specific radial distributions of chemical species can be used to achieve optimal properties. Another in-triguing possibility is the formation of composite-structure materials, even on the nanoscale, by simultaneous growth of filaments and matrix, using appropriate precur-sors. Thus, metal and polymer matrices may, in principle, be strengthened by various types of fiber and particle distributions. In this approach the basic concept is the syn-thesis of scientifically designed materials for specific technological applications.


1995 ◽  
Vol 53 (3) ◽  
pp. 293-315 ◽  
Author(s):  
Danny Summers ◽  
Richard M. Thorne

Electromagnetic and electrostatic instabilities driven by loss-cone particle distributions have been invoked to explain a variety of plasma phenomena observed in space and in the laboratory. In this paper we analyse how the loss- cone feature (as determined by the loss-cone index or indices) influences the growth of such instabilities in a fully ionized, homogeneous, hot plasma in a uniform magnetic field. Specifically, we consider three loss-cone distributions: a generalized Lorentzian (kappa) loss-cone distribution, the Dory—Guest—Harris distribution and the Ashour-Abdalla-Kennel distribution (involving a subtracted Maxwellian). Our findings are common to all three distributions. We find that, for parallel propagation, electromagnetic instabilities are only affected by the loss-cone indices in terms of their occurrence in the temperature anisotropy. However, for oblique propagation, even including propagation at small angles to the ambient magnetic field, the loss-cone indices do independently affect the growth of instabilities for electromagnetic waves, in contrast to certain claims in the literature. For electrostatic waves such that 1, where kx is the component of the wave vector perpendicular to the ambient magnetic field and pLa is the Larmor radius for particle species <r, we find that the loss-cone indices only enter the dispersion equation via the temperature anisotropy, and so in this case the loss-cone feature and perpendicular effective thermal speed do not independently affect wave growth.


1988 ◽  
Vol 102 ◽  
pp. 215
Author(s):  
R.M. More ◽  
G.B. Zimmerman ◽  
Z. Zinamon

Autoionization and dielectronic attachment are usually omitted from rate equations for the non–LTE average–atom model, causing systematic errors in predicted ionization states and electronic populations for atoms in hot dense plasmas produced by laser irradiation of solid targets. We formulate a method by which dielectronic recombination can be included in average–atom calculations without conflict with the principle of detailed balance. The essential new feature in this extended average atom model is a treatment of strong correlations of electron populations induced by the dielectronic attachment process.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
J. Barbillat ◽  
M. Delhaye ◽  
P. Dhamelincourt

Raman mapping, with a spatial resolution close to the diffraction limit, can help to reveal the distribution of chemical species at the surface of an heterogeneous sample.As early as 1975,three methods of sample laser illumination and detector configuration have been proposed to perform Raman mapping at the microscopic level (Fig. 1),:- Point illumination:The basic design of the instrument is a classical Raman microprobe equipped with a PM tube or either a linear photodiode array or a two-dimensional CCD detector. A laser beam is focused on a very small area ,close to the diffraction limit.In order to explore the whole surface of the sample,the specimen is moved sequentially beneath the microscope by means of a motorized XY stage. For each point analyzed, a complete spectrum is obtained from which spectral information of interest is extracted for Raman image reconstruction.- Line illuminationA narrow laser line is focused onto the sample either by a cylindrical lens or by a scanning device and is optically conjugated with the entrance slit of the stigmatic spectrograph.


1992 ◽  
Vol 64 (19) ◽  
pp. 931A-940A ◽  
Author(s):  
Totaro Imasaka ◽  
Masami Hozumi ◽  
Nobuhiko Ishibashi

Sign in / Sign up

Export Citation Format

Share Document