virion infectivity factor
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenying Gao ◽  
Yajuan Rui ◽  
Guangquan Li ◽  
Chenyang Zhai ◽  
Jiaming Su ◽  
...  

Hijacking host ubiquitin pathways is essential for the replication of diverse viruses. However, the role of deubiquitinating enzymes (DUBs) in the interplay between viruses and the host is poorly characterized. Here, we demonstrate that specific DUBs are potent inhibitors of viral proteins from HIVs/simian immunodeficiency viruses (SIVs) that are involved in viral evasion of host restriction factors and viral replication. In particular, we discovered that T cell-functioning ubiquitin-specific protease 8 (USP8) is a potent and specific inhibitor of HIV-1 virion infectivity factor (Vif)-mediated apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3)G (A3G) degradation. Ectopic expression of USP8 inhibited Vif-induced A3G degradation and suppressed wild-type HIV-1 infectivity even in the presence of Vif. In addition, specific DUBs repressed Vpr-, Vpu-, and Vpx-triggered host restriction factor degradation. Our study has revealed a previously unrecognized interplay between the host’s DUBs and viral replication. Enhancing the antiviral activity of DUBs therefore represents an attractive strategy against HIVs/SIVs.


Author(s):  
Sebastian Kostrhon ◽  
J. Rajan Prabu ◽  
Kheewoong Baek ◽  
Daniel Horn-Ghetko ◽  
Susanne von Gronau ◽  
...  

AbstractAn emerging mechanism of ubiquitylation involves partnering of two distinct E3 ligases. In the best-characterized E3-E3 pathways, ARIH-family RING-between-RING (RBR) E3s ligate ubiquitin to substrates of neddylated cullin-RING E3s. The E3 ARIH2 has been implicated in ubiquitylation of substrates of neddylated CUL5-RBX2-based E3s, including APOBEC3-family substrates of the host E3 hijacked by HIV-1 virion infectivity factor (Vif). However, the structural mechanisms remained elusive. Here structural and biochemical analyses reveal distinctive ARIH2 autoinhibition, and activation on assembly with neddylated CUL5-RBX2. Comparison to structures of E3-E3 assemblies comprising ARIH1 and neddylated CUL1-RBX1-based E3s shows cullin-specific regulation by NEDD8. Whereas CUL1-linked NEDD8 directly recruits ARIH1, CUL5-linked NEDD8 does not bind ARIH2. Instead, the data reveal an allosteric mechanism. NEDD8 uniquely contacts covalently linked CUL5, and elicits structural rearrangements that unveil cryptic ARIH2-binding sites. The data reveal how a ubiquitin-like protein induces protein-protein interactions indirectly, through allostery. Allosteric specificity of ubiquitin-like protein modifications may offer opportunities for therapeutic targeting.


2021 ◽  
Vol 11 ◽  
Author(s):  
Daniel J. Salamango ◽  
Reuben S. Harris

Accessory proteins are a key feature that distinguishes primate immunodeficiency viruses such as human immunodeficiency virus type I (HIV-1) from other retroviruses. A prime example is the virion infectivity factor, Vif, which hijacks a cellular co-transcription factor (CBF-β) to recruit a ubiquitin ligase complex (CRL5) to bind and degrade antiviral APOBEC3 enzymes including APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H). Although APOBEC3 antagonism is essential for viral pathogenesis, and a more than sufficient functional justification for Vif’s evolution, most viral proteins have evolved multiple functions. Indeed, Vif has long been known to trigger cell cycle arrest and recent studies have shed light on the underlying molecular mechanism. Vif accomplishes this function using the same CBF-β/CRL5 ubiquitin ligase complex to degrade a family of PPP2R5 phospho-regulatory proteins. These advances have helped usher in a new era of accessory protein research and fresh opportunities for drug development.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 587 ◽  
Author(s):  
Krista A. Delviks-Frankenberry ◽  
Belete A. Desimmie ◽  
Vinay K. Pathak

Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins—A3G, A3F, A3H, and A3D—restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.


2017 ◽  
Vol 91 (7) ◽  
Author(s):  
Wenwen Zheng ◽  
Limian Ling ◽  
Zhaolong Li ◽  
Hong Wang ◽  
Yajuan Rui ◽  
...  

ABSTRACT The virion infectivity factor (Vif) open reading frame is conserved among most lentiviruses. Vif molecules contribute to viral replication by inactivating host antiviral factors, the APOBEC3 cytidine deaminases. However, various species of lentiviral Vif proteins have evolved different strategies for overcoming host APOBEC3. Whether different species of lentiviral Vif proteins still preserve certain common features has not been reported. Here, we show for the first time that diverse lentiviral Vif molecules maintain the ability to interact with the human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55Gag) polyprotein. Surprisingly, bovine immunodeficiency virus (BIV) Vif, but not HIV-1 Vif, interfered with HIV-1 production and viral infectivity even in the absence of APOBEC3. Further analysis revealed that BIV Vif demonstrated an enhanced interaction with Pr55Gag compared to that of HIV-1 Vif, and BIV Vif defective for the Pr55Gag interaction lost its ability to inhibit HIV-1. The C-terminal region of capsid (CA) and the p2 region of Pr55Gag, which are important for virus assembly and maturation, were involved in the interaction. Transduction of CD4+ T cells with BIV Vif blocked HIV-1 replication. Thus, the conserved Vif-Pr55Gag interaction provides a potential target for the future development of antiviral strategies. IMPORTANCE The conserved Vif accessory proteins of primate lentiviruses HIV-1, simian immunodeficiency virus (SIV), and BIV all form ubiquitin ligase complexes to target host antiviral APOBEC3 proteins for degradation, with different cellular requirements and using different molecular mechanisms. Here, we demonstrate that BIV Vif can interfere with HIV-1 Gag maturation and suppress HIV-1 replication through interaction with the precursor of the Gag (Pr55Gag) of HIV-1 in virus-producing cells. Moreover, the HIV-1 and SIV Vif proteins are conserved in terms of their interactions with HIV-1 Pr55Gag although HIV-1 Vif proteins bind Pr55Gag less efficiently than those of BIV Vif. Our research not only sheds new light on this feature of these conserved lentiviral Vif proteins but also provides a formerly unrecognized target for the development of antiviral strategies. Since increasing the Vif-Pr55Gag interaction could potentially suppress virus proliferation, this approach could offer a new strategy for the development of HIV inhibitors.


2015 ◽  
Vol 89 (9) ◽  
pp. 4992-5001 ◽  
Author(s):  
Tadashi Kikuchi ◽  
Yukie Iwabu ◽  
Takuya Tada ◽  
Ai Kawana-Tachikawa ◽  
Michiko Koga ◽  
...  

ABSTRACTHIV-1-infected individuals who control viremia to below the limit of detection without antiviral therapy have been termed elite controllers (EC). Functional attenuation of some HIV-1 proteins has been reported in EC. The HIV-1 accessory protein Vif (virion infectivity factor) enhances viral infectivity through anti-retroviral factor apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G) degradation; however, little is known regarding Vif function in EC. Here, the anti-APOBEC3G activities of clonal, plasma HIV RNA-derived Vif sequences from 46 EC, 46 noncontrollers (NC), and 44 individuals with acute infection (AI) were compared. Vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped viruses were generated by cotransfecting 293T cells with expression plasmids encoding patient-derived Vif, human APOBEC3G, VSV-G, and avif/env-deficientluciferase-reporter HIV-1 proviral DNA clone. Viral stocks were used to infect 293T cells, and Vif anti-APOBEC3G activity was quantified in terms of luciferase signal. On average, the anti-APOBEC3G activities of EC-derived Vif sequences (median log10relative light units [RLU], 4.54 [interquartile range {IQR}, 4.30 to 4.66]) were significantly lower than those of sequences derived from NC (4.75 [4.60 to 4.92],P< 0.0001) and AI (4.74 [4.62 to 4.94],P< 0.0001). Reduced Vif activities were not associated with particular HLA class I alleles expressed by the host. Vif functional motifs were highly conserved in all patient groups. No single viral polymorphism could explain the reduced anti-APOBEC3G activity of EC-derived Vif, suggesting that various combinations of minor polymorphisms may underlie these effects. These results further support the idea of relative attenuation of viral protein function in EC-derived HIV sequences.IMPORTANCEHIV-1 elite controllers (EC) are rare individuals who are able to control plasma viremia to undetectable levels without antiretroviral therapy. Understanding the pathogenesis and mechanisms underpinning this rare phenotype may provide important insights for HIV vaccine design. The EC phenotype is associated with beneficial host immunogenetic factors (such as HLA-B*57) as well as with functions of attenuated viral proteins (e.g., Gag, Pol, and Nef). In this study, we demonstrated that HIV-1 Vif sequences isolated from EC display relative impairments in their ability to counteract the APOBEC3G host restriction factor compared to Vif sequences from normal progressors and acutely infected individuals. This result extends the growing body of evidence demonstrating attenuated HIV-1 protein function in EC and, in particular, supports the idea of the relevance of viral factors in contributing to this rare HIV-1 phenotype.


The Analyst ◽  
2014 ◽  
Vol 139 (15) ◽  
pp. 3709-3713 ◽  
Author(s):  
Cláudia R. Vistas ◽  
Sandra S. Soares ◽  
Rogério M. M. Rodrigues ◽  
Virginia Chu ◽  
João P. Conde ◽  
...  

A hydrogenated amorphous silicon photosensor is coupled to a microfluidic channel functionalized with recombinant single fragment antibodies to detect nanomolar quantities of HIV-1 virion infective factor.


Sign in / Sign up

Export Citation Format

Share Document